

AN65973 - CY8C20xx6A/H/AS

CapSense
®
 Design Guide

Doc. No. 001-65973 Rev. *J

Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

www.cypress.com

www.cypress.com

 Copyrights

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 2

Copyrights

©
Cypress Semiconductor Corporation, 2010-2017. This document is the property of Cypress Semiconductor Corporation

and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or
referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the
United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not,
except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a
written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-
exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for
Software provided in source code form, to modify and reproduce the Software solely for use with Cypress h ardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units,
and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified)
to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this
document without further notice. Cypress does not assume any liability arising out of the application or use of any product
or circuit described in this document. Any information provided in this document, including any sample design information
or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to
properly design, program, and test the functionality and safety of any application made of this information and any
resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems
designed or intended for the operation of weapons, weapons systems, nuclear installations, life -support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or
hazardous substances management, or other uses where the failure of the device or system could cause personal injury,
death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose
failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or
effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and
hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal
injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB,
F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a
more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of
their respective owners.

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 3

Contents

1. Introduction...6

1.1 Abstract ..6
1.2 Cypress’s CapSense Documentation Ecosystem ...6
1.3 CY8C20xx6A/H/AS CapSense Family Features ...8

1.3.1 Advanced Touch Sensing Features..8
1.3.2 Device Features ...9

1.4 Document Conventions ...10

2. CapSense Technology ...11

2.1 CapSense Fundamentals ..11
2.2 Capacitive Sensing Methods in CY8C20xx6A/AS/H ..12

2.2.1 CapSense Sigma-Delta (CSD) ..13
2.2.2 CapSense Successive Approximation Electromagnetic Compatibility (CSA_EMC)14

2.3 SmartSense Auto-Tuning ..15

3. CapSense Design Tools ..17

3.1 Overview ..17
3.1.1 PSoC Designer and User Modules ...17
3.1.2 Universal CapSense Controller Kit..18
3.1.3 Universal CapSense Controller Module Board ...18
3.1.4 CapSense Data Viewing Tools ..19

3.2 User Module Overview...19
3.3 CapSense User Module Global Arrays ...20

3.3.1 Raw Count...20
3.3.2 Baseline ...20
3.3.3 Difference Count (Signal) ...20
3.3.4 Sensor State ...21

3.4 CSD User Module Parameters ...21
3.4.1 User Module High-Level Parameters..22
3.4.2 CSD User Module Low-Level Parameters ...24
3.4.3 CSA_EMC User Module Low-Level Parameters ..25
3.4.4 SmartSense User Module Parameters...27
3.4.5 SmartSense_EMC User Module Parameters..28

4. CapSense Performance Tuning with User Modules ..30

 Contents

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 4

4.1 General Considerations ...30
4.1.1 Signal, Noise, and SNR ..30
4.1.2 Charge/Discharge Rate...31
4.1.3 Importance of Baseline Update Threshold Verification..32

4.2 Tuning the CSA_EMC User Module..32
4.3 Recommended CINT Value for CSA_EMC ..33
4.4 Measuring Sensor CP...33
4.5 Estimating CSA_EMC Clock...34
4.6 Setting Settling Time ..34
4.7 Monitoring CapSense Data ...35
4.8 Methods to Increase SNR ...35

4.8.1 Reduce Noise ...35
4.8.2 Increase Signal...35

4.9 Tuning the CSD User Module...35
4.9.1 Recommended CMOD Value for CSD ..36
4.9.2 ShieldElectrodeOut ..37
4.9.3 IDAC Range...37
4.9.4 Autocalibration ..37
4.9.5 IDAC Value ..37
4.9.6 Precharge Source ..37
4.9.7 Prescaler ...37
4.9.8 Resolution ...38
4.9.9 Scanning Speed ...38
4.9.10 High-Level API Parameters ..39
4.9.11 Set High-Level Parameters ..40

4.10 Using the SmartSense User Module ...40
4.10.1 Guidelines for SmartSense...40
4.10.2 Understanding the Difference ..40
4.10.3 Recommended CCMOD Value for SmartSense...41
4.10.4 SmartSense User Module Parameters...41
4.10.5 SmartSense_EMC User Module Specific Guidelines ..41
4.10.6 Scan Time of a CapSense Sensor..42
4.10.7 SmartSense Response Time ...43
4.10.8 Method to Ensure Minimum SNR Using the SmartSense_EMC User Module......................................44
4.10.9 Firmware Design Guidelines ..45

5. Design Considerations ..47

5.1 Overlay Selection..47
5.2 ESD Protection..48

5.2.1 Prevent...48
5.2.2 Redirect ...48
5.2.3 Clamp...48

5.3 Electromagnetic Compatibility (EMC) Considerations..48
5.3.1 Radiated Interference ..48
5.3.2 Radiated Emissions ...49
5.3.3 Conducted Immunity and Emissions ..49

5.4 Software Filtering ..49
5.5 Power Consumption ...50

5.5.1 System Design Recommendations ...50

 Contents

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 5

5.5.2 Sleep-Scan Method ...50
5.5.3 Response Time versus Power Consumption ..50
5.5.4 Measuring Average Power Consumption ..51

5.6 Pin Assignments ...51
5.7 GPIO Load Transient ...52

5.7.1 Hardware Guidelines to Reduce GPIO Load Transient Noise ...53
5.7.2 Firmware Guidelines to Compensate GPIO Load Transient Noise ...53

5.8 PCB Layout Guidelines..55

6. Low-Power Design Considerations ..56

6.1 Additional Power Saving Techniques..56
6.1.1 Set Drive Modes to Analog HI-Z ..56
6.1.2 Putting it All Together ..57
6.1.3 Sleep Mode Complications...57
6.1.4 Pending Interrupts..57
6.1.5 Global Interrupt Enable ...57

6.2 Post Wakeup Execution Sequence ...58
6.2.1 PLL Mode Enabled ..58
6.2.2 Execution of Global Interrupt Enable ..58
6.2.3 I

2
C Slave with Sleep Mode ...58

6.2.4 Sleep Timer...58

7. Resources..59

7.1 Website...59
7.2 Datasheet...59
7.3 Technical Reference Manual ..59
7.4 Development Kits..59

7.4.1 Universal CapSense Controller Kit..59
7.4.2 Universal CapSense Module Boards..59
7.4.3 In-Circuit Emulation (ICE) Kits ...60

7.5 Sample Board Files ..60
7.6 PSoC Programmer ...62
7.7 CapSense Data Viewing Tools...62
7.8 PSoC Designer ...62
7.9 Code Examples...63
7.10 Design Support ...63

Glossary...64

Revision History ..70

Document Revision History..70

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 6

1. Introduction

1.1 Abstract

This document provides design guidance for using the capacitive sensing (CapSense) functionality with the
CY8C20xx6A/AS/H family of CapSense controllers. The following topics are covered in this guide:

 Features of the CY8C20xx6A/AS/H family of CapSense controllers

 CapSense principles of operation

 Introduction to CapSense design tools

 Detailed guide to tuning the CapSense system for optimal performance

 System electrical and mechanical design considerations for CapSense

 Low-power design considerations for CapSense

 Additional resources and support for designing CapSense into your system

1.2 Cypress’s CapSense Documentation Ecosystem

Figure 1-1 and Table 1-1 summarize the Cypress CapSense documentation ecosystem. These resources allow
implementers to quickly access the information needed to complete a CapSense product design successfully. Figure 1-1
shows the typical flow of a product design cycle with capacitive sensing; the information in this guide is most pertinent to
the topics highlighted in green. Table 1-1 provides links to the supporting documents for each of the numbered tasks in
Figure 1-1.

 Introduction

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 7

Figure 1-1. Typical CapSense Product Design Flow

3. CapSense device selection based

on needed functionality

2. Specify system requirements and

characteristics

11. Preproduction build (prototype)

12. Test and evaluate system functionality and

CapSense performance

Performance

satisfactory?

13. Production

Yes

No

= Topics covered in this document

1. Understanding CapSense technology

4. Mechanical

Design

5. Schematic

capture and

PCB layout

Design for CapSense

9. Programming PSoC
†

10. CapSense

Configuration*

6. PSoC Designer project

creation†

7. Firmware

development†

8. CapSense tuning†

*
†

= Applicable to MBR family of devices only

= Applicable to programmable devices only

 Introduction

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 8

Table 1-1. Cypress Documents Supporting Numbered Design Tasks of Figure 1-1

Numbered Design Task

of Figure 1-1

Supporting Cypress CapSense Documentation

1 ● Getting Started with CapSense

2
● Getting Started with CapSense

● CY8C20xx6A/AS/H CapSense Device Datasheets

3
● Getting Started with CapSense

● PSoC Family-Specif ic CapSense Design Guide (this document)

4 ● Getting Started with CapSense

5
● Getting Started with CapSense

● PSoC Designer™ User Guides

6 ● PSoC Designer User Guides

7

● Assembly Language User Guide

● C Language Compiler User Guide

● CapSense Code Examples

● PSoC Family-Specif ic Technical Reference Manual (for CY8C20xx6A/AS/H)

8

● PSoC Family-Specif ic CapSense Design Guide (this document)

● PSoC Family-Specif ic CapSense User Module Datasheets (CSD and SmartSense™)

● PSoC Family-Specif ic Technical Reference Manual (for CY8C20xx6A/AS/H)

● CapSense Controller Code Examples Design Guide

● AN2397 -CapSense Data Viewing Tools

9

● Programmer User Guide

● MiniProg3 User Guide

● AN2026c - In-System Serial Programming (ISSP) Protocol for CY8C20xx6,
CY8C20xx6A, CY8CTMG2xx, and CY8CTST2xx, CY7C643xx, and CY7C604xx

● AN44168 - PSoC 1 Device Programming using External Microcontroller (HSSP)

● AN59389 - Host-Sourced Serial Programming for CY8C20xx6, CY8CTMG2xx, and
CY8CTST2xx

11
● PSoC Family-Specif ic CapSense Design Guide (this document)

● CapSense Code Examples

1.3 CY8C20xx6A/H/AS CapSense Family Features

Cypress’s CY8C20xx6A/H/AS is a low-power, high-performance, programmable CapSense controller family that includes
the following features.

1.3.1 Advanced Touch Sensing Features

 Programmable capacitive sensing elements

 Supports a combination of CapSense buttons, sliders , and proximity sensors

 Integrated API to implement buttons and sliders

 Supports up to 36 capacitive sensors or 36 GPIO or sliders

 Supports parasitic sensor capacitance range of 5 pF to 45 pF

 SmartSense™ Auto-tuning enables fast time to market

 Sets and monitors tuning parameters automatically at power-up and at run time

 Design portability ˗ self tunes for changes in user interface design

 Environmental compensation during run time

 Detects touches as low as 0.1 pF

http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=35428
http://www.cypress.com/?rID=35428
http://www.cypress.com/?rID=35428
http://www.cypress.com/?rID=35428
http://www.cypress.com/?id=1575&rtID=113
http://www.cypress.com/?rID=34621
http://www.cypress.com/index.cfm?rID=3122
http://www.cypress.com/?rID=50951
http://www.cypress.com/?rID=34621
http://www.cypress.com/?rID=66647
http://www.cypress.com/?rID=2784
http://www.cypress.com/?rID=38050&source=header
http://www.cypress.com/?rID=38154
http://www.cypress.com/?rID=40048
http://www.cypress.com/?rID=40048
http://www.cypress.com/?rID=2906
http://www.cypress.com/?rID=42958
http://www.cypress.com/?rID=42958
http://www.cypress.com/?id=1575&rtID=113

 Introduction

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 9

 Enhanced noise immunity and robustness

 SmartSense compensates for environment and noise variations automatically

 SmartSense_EMC offers superior noise immunity for applications with challenging conducted and radiated noise
conditions

 Internal regulator provides stability against power supply noise and ripple up to 500 mV of supply VDD ripple
acceptable

 Integrated API of software filters for SNR improvement

 Ultra low-power consumption

 Three power modes for optimized power consumption

 Active, sleep, and deep-sleep modes (deep-sleep current: 100 nA)

 28 μA per sensor at 125 ms scan rate

1.3.2 Device Features

 High-performance, low-power M8C Harvard-architecture processor

 Up to 4 MIPS with 24-MHz internal clock, external crystal resonator, or clock signal

 Flexible on-chip memory

 Up to 32 KB of flash and 2 KB of SRAM

 Emulated EEPROM

 Precision, programmable clocking

 Internal main oscillator (IMO): 6/12/24 MHz ± 5%

 Option for precision 32-kHz external crystal oscillator

 Enhanced general-purpose input output (GPIO) features

 Up to 36 GPIOs with programmable pin configuration

 25-mA sink current / GPIO and 120-mA total sink current / device

 Internal resistive pull-up, high-z, open-drain, and strong drive modes on all GPIOs

 Peripheral features

 Three 16-bit timers

 Full-speed USB - 12 Mbps USB 2.0 compliant

 I
2
C - Master (100 kHz) and Slave (up to 400 kHz)

 SPI - Master and Slave - configurable range of 46.9 kHz to 12 MHz

 Up to 10-bit ADC - 0 to 1.2 V input range

 Operating conditions

 Wide operating voltage: 1.71 V to 5.5 V

 Temperature range: –40 °C to +85 °C

 Introduction

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 10

1.4 Document Conventions

Convention Usage

Courier New
Displays f ile locations, user entered text, and source code:
C:\ ...cd\icc\

Italics
Displays f ile names and reference documentation:
Read about the sourcefile.hex f ile in the PSoC Designer User Guide.

[Bracketed, Bold] Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]

File > Open Represents menu paths:
File > Open > New Project

Bold Displays commands, menu paths, and icon names in procedures:
Click the File icon and then click Open.

Times New Roman Displays an equation:
2 + 2 = 4

Text in gray boxes Describes Cautions or unique functionality of the product.

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 11

2. CapSense Technology

2.1 CapSense Fundamentals

CapSense is a touch-sensing technology that works by measuring the capacitance of each I/O pin on the CapSense
controller that is designated as a sensor. As shown in Figure 2-1, the total capacitance on each of the sensor pins can be
modeled as equivalent lumped capacitors with values of CX,1 through CX,n for a design with n sensors. Circuitry internal to
the CY8C20xx6A/AS/H device converts the magnitude of each CX into a digital code that is stored for post processing.
The other component, CMOD, is used by the CapSense controller’s internal circuitry and is discussed in detail in Capacitive
Sensing Methods in CY8C20xx6A/AS/H.

Figure 2-1. CapSense Implementation in a CY8C20xx6A/AS/H PSoC Device

As shown in Figure 2-1, each sensor I/O pin is connected to a sensor pad by traces, vias, or both as necessary. The
overlay is a nonconductive cover over the sensor pad that constitutes the product’s touch interface. When a finger
touches the overlay, the conductivity and mass of the body effectively introduce a grounded conductive plane parallel to
the sensor pad. This is represented in Figure 2-2. This arrangement constitutes a parallel plate capacitor; its capacitance
is given by Equation 1.

 Equation 1

Where:

 CapSense Technology

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 12

CF = Capacitance affected by a finger in contact with the overlay over a sensor

ε0 = Free space permittivity

εr = Dielectric constant (relative permittivity) of overlay

A = Area of finger and sensor pad overlap

D = Overlay thickness

Figure 2-2. Section of Typical CapSense PCB with the Sensor being Activated by a Finger

In addition to the parallel plate capacitance, a finger in contact with the overlay causes electric field fringing between itself
and other conductors in the immediate vicinity. The effect of these fringing fields is typically minor compared to that of the
parallel plate capacitor and can usually be ignored.

Even without a finger touching the overlay, the sensor I/O pin has some parasitic capacitance (C P). CP results from the
combination of the CapSense controller internal parasitic and electric field coupling between the sensor pad, traces, vias,
and other conductors in the system such as ground plane, other traces, any metal in the product’s chassis or enclosure,
and so on. The CapSense controller measures the total capacitance (CX) connected to a sensor pin.

When a finger is not touching a sensor:

 Equation 2

When a finger is on the sensor pad, CX equals the sum of CP and CF:

 Equation 3

In general, CP is an order of magnitude greater than CF. CP usually ranges from 10 pF to 20 pF, but in extreme cases can
be as high as 50 pF. CF usually ranges from 0.1 pF to 0.4 pF. The magnitude of CP is of critical importance when tuning a
CapSense system and is discussed in CapSense Performance Tuning with User Modules .

2.2 Capacitive Sensing Methods in CY8C20xx6A/AS/H

CY8C20xx6A/AS/H devices support several CapSense methods for converting sensor capacitance (C X) into digital
counts. These are CapSense Sigma Delta (CSD), CapSense Successive Approximation Electro-Magnetic Compatibility
(CSA_EMC), SmartSense, and SmartSense_EMC. These methods are implemented in the form of a PSoC Designer
User Module and are described in the following sections.

 CapSense Technology

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 13

2.2.1 CapSense Sigma-Delta (CSD)

The CapSense Sigma-Delta method in CY8C20xx6A/AS/H devices incorporates CX into a switched capacitor circuit as
shown in Figure 2-3. The sensor (CX) is alternatively connected to GND and the analog mux (AMUX) bus by the
underlapped switches Sw1 and Sw2, respectively. Sw1 and Sw2 are driven by a Precharge clock to bleed current
(ISENSOR) from the AMUX bus. The magnitude of ISENSOR is directly proportional to the magnitude of CX. The Sigma-Delta
converter samples AMUX bus voltage and generates a modulating bit stream that controls the constant current source
(IDAC), which charges AMUX such that the average AMUX bus voltage is maintained at VREF. The sensor bleeds off the
charge ISENSOR from the modulating capacitor (CMOD). CMOD in combination with Rbus forms a low-pass filter that
attenuates precharge switching transients at the Sigma-Delta converter input.

Figure 2-3. CSD Block Diagram

Cx isensor

Sigma-Delta

Converter

Precharge

Clock

Cmod

2.2nF/X7R/5V

High-Z

input

Sw1

Sw2

CY8C20xx6A/AS/H

Gnd

= External Connection

AMUX

Bus

Vref

Rbus

Gnd

IDAC

In maintaining the average AMUX voltage at a steady state value (VREF), the Sigma-Delta converter matches the average
charge current (IDAC) to ISENSOR by controlling the bit stream duty cycle. The Sigma-Delta converter stores the bit stream
over the duration of a sensor scan and the accumulated result is a digital output value, known as raw count, which is
directly proportional to CX. This raw count is interpreted by high-level algorithms to resolve the sensor state. Figure 2-4
plots the CSD raw counts from a number of consecutive scans during which the finger touches and then releases the
sensor. As explained in CapSense Fundamentals, the finger touch causes CX to increase by CF, which in turn causes raw
counts to increase proportionally. By comparing the shift in steady state raw count level to a predetermined threshold, the
high-level algorithms can determine whether the sensor is in the On (Touch) or Off (No Touch) state.

 CapSense Technology

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 14

Figure 2-4. CSD Raw Counts during a Finger Touch

2.2.2 CapSense Successive Approximation Electromagnetic Compatibility (CSA_EMC)
The CapSense Successive Approximation Electromagnetic Compatibility (CSA_EMC) m ethod used in CY8C20xx6A
devices incorporates CX into a switched capacitor circuit, as shown in Figure 2-5.

Figure 2-5. CSA_EMC Block Diagram

Cx

isensor

Single

Slope ADC

Precharge

Clock

Cint

1.2nF/X7R/5V

High-Z

input

CY8C20xx6A/H/AS

Gnd

= External Connection

AMUX

Vref

Rbus

Sw1

Sw2

iDAC

idiff

The constant current source (IDAC) provides IDAC amount of current into the AMUX. The sensor (CX) which is alternatively
connected between AMUX bus and GND by the switches Sw1 and Sw2, respectively, drains away ISENSOR amount of
current from the AMUX bus. The magnitude of ISENSOR is directly proportional to the magnitude of CX. The switches Sw1
and Sw2 are clocked by a non-overlapping clock known as precharge clock.

The integration capacitor C INT integrates the difference current iDiff (difference of IDAC and ISENSOR) and increases its
potential. This charge integration continues until the potential developed across CINT reaches an equilibrium level at which
ISENSOR becomes equal to IDAC. This integration time is referred to as settling time.

A single slope ADC is used to convert the equilibrium potential on CINT to digital output counts, known as raw count, which
is proportional to CX. This raw count is interpreted by high-level algorithms to resolve sensor state.

The IDAC current is set using successive approximation method to make sure the equilibrium voltage on CINT is in the linear
conversion region of ADC.

 CapSense Technology

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 15

Figure 2-6 plots the CSA_EMC raw counts from a number of consecutive scans during which the sensor is touched and
then released by a finger. As explained in CapSense Fundamentals, the finger touch causes CX to increase by CF which
in turn causes raw counts to increase proportionally. By comparing the shift in the s teady state raw count level to a
predetermined threshold, the high-level algorithms can determine whether the sensor is in an ON (Touch) or OFF (No
Touch) state.

Figure 2-6. CSA_EMC Raw Counts during a Finger Touch

The CSA_EMC CapSense algorithm is enhanced to work well in the presence of RF interference. CSA_EMC is used in
applications where CapSense is exposed to conducted interference, AC noise, and other noise sources such as inverters,
transformers, and power supplies. CSA_EMC User Module Low-Level Parameters discusses this topic in detail.

2.3 SmartSense Auto-Tuning

Tuning the touch-sensing user interface is a critical step in ensuring proper system operation and a pleasant user
experience. The typical design flow involves tuning the sensor interface in the initial design phase, during system
integration, and finally production fine-tuning before the production ramp. Tuning is an iterative process and can be time
consuming. SmartSense Auto-tuning is developed to simplify the user interface development cycle. It is easy to use and
significantly reduces the design cycle time by eliminating the tuning process throughout the entire product development
cycle, from prototype to mass production. SmartSense tunes each CapSense sensor automatically at power up and then
monitors and maintains optimum sensor performance during run time. This technology adapts for manufacturing variation
in PCBs, overlays, and noise generators such as LCD inverters, AC line noise, and switch-mode power supplies, and
automatically tunes them out.

2.3.1.1 Process Variation

The SmartSense User Module (UM) for the CY8C20xx6A/H/AS is designed to work with sensor parasitic capacitance in
the range of 5 pF to 45 pF (typical sensor CP values are in the range of 10 pF to 20 pF). The sensitivity parameter for
each sensor is set automatically, based on the characteristics of that particular sensor. This improves the yield in mass
production, because consistent response is maintained from every sensor regardless of CP variation between sensors
within the specified range of 5 pF to 45 pF.

Parasitic capacitance of the individual sensors can vary due to PCB layout, PCB manufacturing process variation, or with
vendor-to-vendor PCB variation within a multisourced supply chain. The sensor sensitivity depends on its parasitic
capacitance; higher CP values decrease the sensor sensitivity and result in decreased finger touch signal amplitude. In
some cases, the change in CP value detunes the system, resulting in less than optimum sensor performance (either too
sensitive or not sensitive enough) or worst case, a nonoperational sensor. In either situation, you must retune the system,
and in some cases requalify the UI subsystem. SmartSense Auto-tuning solves these issues.

 CapSense Technology

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 16

SmartSense Auto-tuning makes platform designs possible. Imagine the capacitive touch sensing multimedia keys in a
laptop computer; the spacing between the buttons depends on the size of the laptop and keyboard layout. In this example,
the wide-screen machine has larger spaces between the buttons compared to a standard-screen model. More space
between buttons means increased trace length between the sensor and the CapSense controller, which leads to higher
parasitic capacitance of the sensor. This means that the parasitic capacitance of the CapSense buttons can be different in
different models of the same platform design. Though the functionality of these buttons is the same for all laptop models,
the sensors must be tuned for each model. SmartSense enables you to do platform designs using the recommended best
practices shown in the PCB layout in Getting Started with CapSense, knowing the tuning will be done efficiently and
automatically.

Figure 2-7. Design of Laptop Multimedia Keys for a 21-inch Model

Figure 2-8. Design of Laptop Multimedia Keys for a 15-inch Model with Identical Functionality and Button Size

2.3.1.2 Reduced Design Cycle Time

Usually, the most time-consuming task for a capacitive sensor interface design is firmware development and sensor
tuning. With a typical touch-sensing controller, the sensor must be retuned when the same design is ported to different
models or when there are changes in the mechanical dimensions of the PCB or the sensor PCB layout. A design with
SmartSense solves these challenges because it needs less firmware development effort, no tuning, and no retuning. This
makes a typical design cycle much faster. Figure 2-9 compares the design cycles of a typical touch-sensing controller and
a SmartSense-based design.

Figure 2-9. Typical Capacitive Interface Design Cycle Comparison

Feasibility

Study Schematics

Design

PCB Layout

Design

Mechanical Design

Review

System

Integration

Re-tuning for any

changes
Tuning Process

Production Fine

Tuning

Design

Validation
Production

Typical Capacitive User Interface Design Cycle

Firmware

Development

Feasibility

Study

Schematics

Design

PCB Layout

Design

Mechanical Design

Review

System

Integration

Design

Validation
Production

SmartSense based Capacitive User Interface Design Cycle

Firmware

Development

http://www.cypress.com/?rID=48787

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 17

3. CapSense Design Tools

3.1 Overview

Cypress offers a full line of hardware and software tools for developing your CapSense capacitive touch-sense
application. A basic development system for the CY8C20xx6A/H/AS family includes the following components. See
Resources for ordering information.

3.1.1 PSoC Designer and User Modules

Cypress’s exclusive integrated design environment, PSoC Designer, allows you to configure analog and digital blocks,
develop firmware, and tune and debug your design. Applications are developed in a drag -and-drop design environment
using a library of user modules. User modules are configured either through the Device Editor GUI or by writing into
specific registers with firmware. PSoC Designer comes with a built-in C compiler and an embedded programmer. A pro-
compiler is available for complex designs.

The CSA_EMC User Module implements capacitive touch sensors using switched-capacitor circuitry, an analog
multiplexer, a comparator, digital counting functions, and high-level software routines (APIs). User modules for other
analog and digital peripherals are available to implement additional functionality such as I

2
C, SPI, TX8, and timers.

Figure 3-1. PSoC Designer Device Editor

http://www.cypress.com/?id=2522

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 18

3.1.1.1 Getting Started with CapSense User Modules

To create a new CY8C20xx6A/H/AS project in PSoC Designer:

1. Create a new PSoC Designer project with CY8C20xx6 as the target device.

2. Select and place the CSD/CSA_EMC/SmartSense User Module.

3. Right-click the user module to access the User Module wizard.

4. Set button sensor count, slider configuration, pin assignments, and associations.

5. Set pins and global user module parameters.

6. Generate the application and switch to the Application Editor.

7. Adapt sample code from the user module datasheet to implement buttons or sliders.

For a detailed step-by-step procedure to create a PSoC Designer project and to configure the User Module wizard, see
the datasheet of the specific user module. For code examples on CapSense user modules, see Code Examples.

3.1.2 Universal CapSense Controller Kit

The Universal CY3280-20xx6 CapSense Controller Kit features predefined control circuitry and plug-in hardware to make
prototyping and debugging easy. The MiniProg hardware is included with the kit for programming, and the I

2
C-to-USB

Bridge hardware is included for tuning and data acquisition.

Figure 3-2. CY3280-20xx6 CapSense Controller Kit

3.1.3 Universal CapSense Controller Module Board

Cypress’s module boards feature a variety of sensors, LEDs, and interfaces to meet your application’s needs .

 CY3280-BSM Simple Button Module

 CY3280-BMM Matrix Button Module

 CY3280-SLM Linear Slider Module

 CY3280-SRM Radial Slider Module

 CY3280-BBM Universal CapSense Prototyping Module

http://www.cypress.com/?rID=38222
http://www.cypress.com/?rID=37760
http://www.cypress.com/?rID=37759
http://www.cypress.com/?rID=37761
http://www.cypress.com/?rID=37762
http://www.cypress.com/?rID=3483

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 19

3.1.4 CapSense Data Viewing Tools

Often during the CapSense design process, you will want to monitor CapSense data (raw counts, baseline, difference
counts, and so on) for tuning and debugging purposes. This can be done with two CapSense data viewing tools,
MultiChart and Bridge Control Panel. Application note AN2397 – CapSense Data Viewing Tools discusses these tools in
detail.

3.2 User Module Overview

Figure 3-3. User Module Block Diagram

User modules contain an entire CapSense system from physical sensing to data processing. The behavior of the user
module is defined using several parameters. These parameters affect different parts of the sensing system and can be
separated into low-level and high-level parameters that communicate with one another using global arrays.

Low-level parameters, such as the speed and resolutions for scanning sensors, define the behavior of the sensing method
at the physical layer and relate to the conversion from capacitance to raw count. Low-level parameters are unique to each
type of sensing method and are described in CSD User Module Low-Level Parameters, CSA_EMC User Module Low-
Level Parameters, and SmartSense User Module Parameters .

High-level parameters, such as debounce counts and noise thresholds, define how the raw counts are processed to
produce information such as the sensor On/Off state and the estimated finger position on a slider. These parameters are
the same for all sensing methods and are described in User Module High-Level Parameters.

http://www.cypress.com/?rID=2784

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 20

3.3 CapSense User Module Global Arrays

Before learning CapSense User Module parameters, you must be familiar with certain global arrays used by the
CapSense system. These arrays should not be altered manually, but may be inspected for debugging purposes.

Figure 3-4. Raw Count, Baseline, Difference Count, and Sensor State

3.3.1 Raw Count

The hardware circuit in the CapSense controller measures the sensor capacitance. It stores the result in a digital form
called raw count upon calling the user module API UMname_ScanSensor(), where UMname can be CSD, SmartSense, or
CSA_EMC.

The raw count of a sensor is proportional to its sensor capacitance. Raw count increases as the sensor capacitance value
increases.

The raw count values of sensors are stored in the UMname_waSnsResult[] integer array. This array is defined in the
header file UMname.h.

3.3.2 Baseline

Gradual environmental changes such as temperature and humidity affect the sensor raw count, which results in variations
in the counts.

The user module uses a complex baselining algorithm to compensate for these variations. The algorithm uses baseline
variables to accomplish this. The baseline variables track any gradual variations in raw count values. Essentially, the
baseline variables hold the output of a digital low pass filter to which input raw count values are fed.

The baselining algorithm is executed by the user module API UMname_UpdateSensorBaseline, where UMname can be
CSD, SmartSense, or CSA_EMC.

The baseline values of sensors are stored in UMname_waSnsBaseline[] integer array. This array is defined in the header
file UMname.h.

3.3.3 Difference Count (Signal)
The Difference Count, also known as the signal of a sensor, is defined as the difference in counts between a sensor’s raw
count and baseline values. When the sensor is inactive, the Difference Count is zero. Activating sensors (by touching)
results in a positive Difference Count value.

The Difference Count values of sensors are stored in the UMname_waSnsDiff[] integer array, where UMname can be
CSD, SmartSense, or CSA_EMC. This array is defined in the header file UMname.h.

Difference count variables are updated by the user module API UMname_UpdateSensorBaseline().

Raw Count

Difference Count
(Signal)

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 21

3.3.4 Sensor State
Sensor state represents the active/inactive status of the physical sensors. The s tate of the sensor changes from 0 to 1
upon finger touch and returns to 0 upon finger release.

Sensor states are stored in a byte array named UMname_baSnsOnMask[]array, where UMname can be CSD,
SmartSense, or CSA_EMC. This array is defined in the header file UMname.h. Each array element stores the sensor
state of eight consecutive sensors.

Sensor states are updated by the user module API UMname_bIsAnySensorActive().

3.4 CSD User Module Parameters

The CSD User Module parameters are classified into high-level and low-level parameters. See Figure 3-5 for a list of
CSA_EMC User Module parameters and how they are classified. See Figure 3-6 for a list of CSD User Module
parameters and how they are classified.

Figure 3-5. PSoC Designer – CSA_EMC Parameter Window

High-Level

Low-Level

High-Level

Low-Level

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 22

Figure 3-6. PSoC Designer – CSD Parameter Window

3.4.1 User Module High-Level Parameters

3.4.1.1 Finger Threshold

The user module uses the Finger Threshold parameter to judge the active/inactive state of a sensor. If the Difference
Count value of a sensor is greater than the Finger Threshold value, the sensor is judged as active. This definition
assumes that the hysteresis level is set to zero and Debounce is set to 1.

Possible values are 3 to 255.

For the recommended value, see Set High-Level Parameters.

3.4.1.2 Hysteresis

The Hysteresis setting prevents the sensor state from random toggling because of system noise. The Hysteresis
parameter is used in conjunction with the Finger Threshold to determine the sensor state. If the Difference Count exceeds
the Finger Threshold + Hysteresis level for Debounce number of samples, the sensor state changes from OFF to ON. If
the Difference Count drops below the Finger Threshold – Hysteresis level, the sensor state changes from ON to OFF.
Equation 4 illustrates the Hysteresis function.

 Equation 4

For the recommended value, see Set High-Level Parameters .

3.4.1.3 Debounce

The Debounce parameter prevents spikes in raw counts from changing the sensor state from OFF to ON. For the sensor
state to transition from OFF to ON, the Difference Count value must remain greater than the Finger Threshold value plus
the hysteresis level for the number of samples specified.

Possible values are 1 to 255. A setting of 1 provides no debouncing.

For the recommended value, see Set High-Level Parameters.

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 23

3.4.1.4 Baseline Update Threshold

As previously explained, the baseline variables keep track of any gradual variations in raw count values. In other words,
baseline variables hold the output of a digital low-pass filter to which the input raw count values are fed. The Baseline
Update Threshold parameter is used to adjust the time constant of this low-pass filter.

Baseline update threshold is directly proportional to the time constant of this filter. The higher the baseline update
threshold value, the higher the time constant.

Possible values are 0 to 255.

For the recommended value, see Set High-Level Parameters.

3.4.1.5 Noise Threshold

The user module uses the Noise Threshold value to interpret the upper limit of noise counts in the raw count. For
individual sensors, the baselining update algorithm is paused when the raw count is greater than the baseline and the
difference between them is greater than this threshold.

For slider sensors, the centroid calculation is paused when the difference count is greater than the Noise Threshold value.

Possible values are 3 to 255. For proper user module operation, the Noise Threshold value should ne ver be set higher
than Finger Threshold minus Hysteresis.

For the recommended value, see Set High-Level Parameters.

3.4.1.6 Negative Noise Threshold

The Negative Noise Threshold helps the user module to understand the lower limit of noise counts in the raw count. The
baselining update algorithm is paused when the raw count is below the baseline and the difference between them is
greater than this threshold.

Possible values are 0 to 255.

For the recommended value, see Set High-Level Parameters.

3.4.1.7 Low Baseline Reset

The Low Baseline Reset parameter works in conjunction with the Negative Noise Threshold parameter. If the sample
count values are less than the baseline minus the negative noise threshold for the specified number of samples, the
baseline is set to the new raw count value. It counts the number of abnormally low samples required to reset the baseline.
It is used to correct the finger-on-at-startup condition.

Possible values are 0 to 255.

For the recommended value, see Set High-Level Parameters.

3.4.1.8 Sensors Autoreset

Enabling Sensor Autoreset feature prevents sensor from being in ON state for indefinite period of time. This parameter
determines whether the baseline is updated always, or only when the difference counts are below the Noise Threshold
parameter.

When Sensors Autoreset is enabled, the baseline is always updated even if the Difference Count is greater than Noise
Threshold. This limits the maximum duration of a sensor in the ON state when the sensor is touched continuously
(typically for more than 5 to 10 seconds), but prevents the sensor from permanently being ON when the raw counts
accidentally increase without finger touch on the sensor. This sudden increase can be caused by an electrical damage in
the system or by a metal object placed close to the sensor.

When Sensors Autoreset is disabled, the bas eline is updated only when the Difference Count is below the Noise
Threshold parameter. Hence, as long as the sensor is touched, the sensor is in ON state.

Possible values are 'Enabled' and 'Disabled'. For the recommended setting, see Set High-Level Parameters.

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 24

3.4.2 CSD User Module Low-Level Parameters

The CSD User Module has several low-level parameters in addition to the high-level parameters. These parameters are
specific to the CSD sensing method and determine how raw count data is acquired from the sensor.

3.4.2.1 IDAC Value

The IDAC parameter sets the capacitance measurement range. A higher value corresponds to a wider range. Adjust the
IDAC value such that raw counts are at about 50 to 70 percent of full range. This parameter can be changed at run time
using the user module API CSD_SetIdacValue().

Possible values are 1 to 255.

3.4.2.2 Resolution

This parameter determines the scanning resolution in bits. The maximum raw count for scanning resolution of N bits is
2

N
–1. Increasing the resolution improves sensitivity, but reduces scan time.

Possible values are 9 to 16 bits.

Table 3-1. Resolution and Scan Speed

Resolution

Scan Speed for Individual Buttons (µs)

Ultra Fast Fast Normal Slow

9 57 78 125 205

10 78 125 205 380

11 125 205 380 720

12 205 380 720 1400

13 380 720 1400 2800

14 720 1400 2800 5600

15 1400 2800 5600 11000

16 2800 5600 11000 22000

3.4.2.3 Scanning Speed

This parameter sets the sensor scanning speed. Although a faster scanning speed provides a good response time, slower
scanning speeds give the following advantages:

 Improved SNR

 Better immunity to power supply and temperature changes

 Less demand for system interrupt latency; you can handle longer interrupts

Possible values are Ultra Fast, Fast, Normal, and Slow.

3.4.2.4 Shield Electrode Out

A shield electrode is used to reduce parasitic capacitance. This parameter selects where to route the output of the shield
electrode.

Possible values are P0[7] or P1[2].

3.4.2.5 Precharge Source

This parameter selects the clock source for precharge switches.

Possible values are PRS and Prescaler. Use the PRS source in most cases to get better EMI immunity and lower
emission.

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 25

3.4.2.6 Prescaler

This parameter sets the prescaler ratio and determines the precharge switch output frequency. This parameter also
affects the PRS output frequency.

Possible values are 1, 2, 4, 8, 16, 32, 64, 128, and 256.

3.4.2.7 PRS Resolution

This parameter changes the PRS sequence length.

Possible values are 8-bit and 12-bit. Corresponding sequence lengths are 511 and 2047 input clock periods. Use an 8-bit
setting if the 12-bit setting does not provide good SNR.

3.4.2.8 Autocalibration

When Autocalibration is enabled, the raw count value is normalized as a percentage of the max count (2
N
–1) where N is

the resolution. Autocalibration overrides the device editor settings.

When Autocalibration is disabled, the raw count value depends on IDAC range, IDAC value, resolution, sensor capacitance,
IMO frequency, prescaler, precharge source, and VREF parameters set in the device editor.

Autocalibration consumes ROM and RAM resources and increases start time. Autocalibration does not automatically
select the IDAC range value. If the raw count value after calibration is less than half of the resolution range, you should
increase the IDAC range or reduce the precharge frequency. Autocalibration works to improve marginally functional
configurations.

3.4.2.9 IDAC Range

The IDAC Range parameter scales the IDAC current output. For example, selecting 2x will scale the IDAC output to twice the
range.

Possible values are 1x, 2x, 4x, and 8x.

3.4.3 CSA_EMC User Module Low-Level Parameters

The CSA_EMC User Module has several low-level parameters in addition to the high-level parameters. These parameters
are specific to the CSA_EMC sensing method and determine how raw count data is acquired from the sensor.

3.4.3.1 Settling Time

The Settling Time parameter controls the software delay that allows the voltage on the C MOD capacitor to stabilize. Each
loop has nine CPU cycles per iteration. Select a settling time based on Equation 5.

 Equation 5

Where:

RSERIES = 400-Ω + series resistor placed between port pin and sensor (typical value 560 Ω)

CP = sensor base capacitance

Possible values are 2 to 255.

3.4.3.2 Freq Num

This parameter improves EMC performance by implementing a patented EMC improvement technology. Freq Num = 1
corresponds to the standard scanning algorithm and Freq Num = 3 turns on the advanced algorithm. Enabling the
advanced scanning algorithm increases the scanning time and RAM usage by a factor of three.

Possible values are 1 (standard scanning algorithm) and 3 (advanced algorithm).

3.4.3.3 Spread Spectrum

This parameter improves EMC performance by implementing a firmware-based spread-spectrum technique that randomly
changes the clock value during scanning. Spread spectrum is enabled when Freq Num is set to 1.

Possible values are 1 (enabled) and 3 (disabled).

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 26

3.4.3.4 Raw Data Median Filter

The median filter looks at the three mos t recent samples from a sensor and reports the median value. It is used to remove
short noise spikes. This filter generates a delay of one sample. This filter is generally not recommended because of the
delay and RAM usage. Enabling this filter consumes (Number of Sensors × 2 × Freq Num) bytes of RAM and 100 bytes of
flash. It is disabled by default.

Possible values are Enabled and Disabled.

3.4.3.5 RawData IIR Filter

This infinite impulse response (IIR) filter reduces noise in the conversion result (raw count). Fi ltering on the raw counts
can be more effective than filtering the XY coordinate, but requires more RAM. Enabling this filter consumes an additional
100 bytes of flash. It is disabled by default. The default IIR coefficient is 0.5.

Possible values are Enabled and Disabled.

3.4.3.6 RawData IIR Filter Coefficient

This is the coefficient for the Raw Count IIR filter.

Possible values are 2 (½ previous sample + ½ current sample) and 4 (¾ previous sample + ¼ current sample).

3.4.3.7 Clock

The Clock parameter can be used to increase the effective resistance of the sensor. If the sensor area is large, the
effective resistance may be too high for the autocalibration of the switched capacitor circuit. Large proximity sensors may
encounter decreased sensitivity. In this case, the settling voltage is too far below the comparator threshold. Setting a
larger divider of the internal main oscillator (IMO) increases the effective resistance, which compensates for the high
capacitance.

Possible values are IMO, IMO/2, IMO/4, and IMO/8.

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 27

3.4.4 SmartSense User Module Parameters

Figure 3-7. PSoC Designer SmartSense Parameters

3.4.4.1 Shield Electrode Out
A shield electrode is used to reduce parasitic capacitance. This parameter selects where to route the output of the shield
electrode.

Possible values are P0[7] or P1[2].

3.4.4.2 Sensor Sensitivity

This parameter is used to increase and decrease the sensitivity of a sensor.

Possible values are 0.1 pF, 0.2 pF, 0.3 pF, and 0.4 pF.

3.4.4.3 MultiChart for Monitoring CapSense User Module Parameters

Tuning the CapSense system requires you to monitor the CapSense User Module global arrays. The MultiChart
application helps to monitor this parameter very easily. See the application note AN2397 for more details on the use of
MultiChart.

High-Level

 Low-Level

http://www.cypress.com/?rID=2784

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 28

3.4.5 SmartSense_EMC User Module Parameters

Figure 3-8. PSoC Designer SmartSense_EMC Parameters

3.4.5.1 Shield Electrode Out

A shield electrode is used to reduce parasitic capacitance. This parameter selects where to route the output of the shield
electrode.

Possible values are P0[7] or P1[2].

3.4.5.2 Immunity Level

This parameter defines the immunity level of the user module agains t the external noise. Selecting a High immunity level
provides maximum immunity against the external noise. A Medium immunity level provides moderate immunity. Setting
the Immunity level to Medium consumes two times the scan time and RAM memory, and setting the immunity level to
High consumes three times the scan time and RAM memory for sensor implementation compared to the Low immunity
mode.

Possible values are Low, Medium, and High.

Figure 3-9. PSoC Designer SmartSense_EMC Global Setting

3.4.5.3 Threshold Setting Mode

Selecting Manual threshold mode provides flexibility in setting the finger threshold for each sensor. Selecting Automatic
threshold mode causes the SmartSense_EMC User Module to automatically set the thresholds for each sensor.
Automatic threshold mode consumes more RAM than Manual threshold mode.

Possible values are Manual and Automatic.

High Level

Low Level

 High Level

LowLevel

 CapSense Design Tools

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 29

Figure 3-10. PSoC Designer SmartSense_EMC Sensor Setting

3.4.5.4 Sensor Sensitivity

This parameter is used to increase and decrease the sensitivity of a sensor.

Possible values are 0.1 pF, 0.2 pF, 0.3 pF, and 0.4 pF.

Low Level

High Level

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 30

4. CapSense Performance Tuning with
User Modules

Optimal user module parameter settings depend on board layout, button dimensions, overlay material, and application
requirements. These factors are discussed in Design Considerations. Tuning is the process of identifying the optimal
parameter settings for robust and reliable sensor operation.

4.1 General Considerations

4.1.1 Signal, Noise, and SNR

A well-tuned CapSense system reliably discriminates between ON and OFF sensor states. To achieve this level of
performance, the CapSense signal must be significantly larger than the CapSense noise. The CapSense signal is
compared to the CapSense noise by using a quantity called signal-to-noise ratio (SNR). Before discussing the meaning of
SNR for CapSense, let us define signal and noise in the context of touch sensing.

4.1.1.1 CapSense Signal
The CapSense signal is the change in the sensor response when a finger is placed on the sensor, as demonstrated in
Figure 4-1. The output of the sensor is a digital counter with a value that tracks the sensor capacitance. In this example,
the average level without a finger on the sensor is 5925 counts. When a finger is placed on the sensor, the average ou tput
increases to 6060 counts. Because the CapSense signal tracks the change in counts due to the finger, Signal = 6060 –
5925 = 135 counts.

Figure 4-1. CapSense Signal and Noise

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 31

4.1.1.2 CapSense Noise

CapSense noise is the peak-to-peak variation in sensor response when a finger is not present, as demonstrated in Figure
4-1. In this example, the output waveform without a finger is bound by a minimum of 5912 counts and a maximum of 5938
counts. Because the noise is the difference between the minimum and maximum values of this waveform, Noise = 5938 –
5912 = 26 counts.

4.1.1.3 CapSense SNR

CapSense SNR is the simple ratio of signal and noise. Continuing with the example, if the signal is 135 counts and noise
is 26 counts, and then SNR is 135:26, which reduces to an SNR of 5.2:1. The minimum recommended SNR for
CapSense is 5:1, which means the signal is five times larger than the noise. Filters are commonly implemented in
firmware to reduce noise. See Software Filtering for more information.

4.1.2 Charge/Discharge Rate

To achieve maximum sensitivity in the tuning process, the sensor capacitor must be fully charged and discharged during
each cycle. The charge/discharge path switches between two s tates at a rate set by a user module parameter called
Clock in the CSA_EMC User Module, and Precharge Clock in the CSD User Module.

The charge/discharge path includes series resistance that slows down the transfer of charge. The rate of change for this
charge transfer is characterized by an RC time constant involving the sensor capacitor and series resistance, as shown in
Figure 4-2.

Figure 4-2. Charge/Discharge Waveforms

Vs

Vx

Vdd

Vref

Vdd

Vref

t

t

Rx

Cx

VsVx

5*Rx*Cx 5*Rx*Cx

Tsmin >= 10*Rx*Cx

Set the charge/discharge rate to a level that is compatible with this RC time constant. You should allow a period of 5RC
for each transition, with two transitions per period (one charge, one discharge).The equations for mi nimum period and
maximum frequency are:

 Equation 6

 Equation 7

For example, assume the series resistor includes a 560-Ω external resistor and up to 800 Ω of internal resistance, and the
sensor capacitance is typical:

RX = 1.4 kΩ

CX= 24 pF

The value of the time constant and maximum front-end switching frequency in this example is:

Tsmin = 0.34 µs

fsmax = 3 MHz

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 32

4.1.3 Importance of Baseline Update Threshold Verification
Temperature and humidity both cause the average number of counts to drift over time. The baseline is a reference count
level for CapSense measurements that is an important part of compensating for environmental effects. High -level
decisions, such as Finger Present and Finger Absent states, are based on the reference level established by the baseline.
Because each sensor has unique parasitic capacitance associated with it, each capacitive sensor has its own baseline.

Baseline tracks the change in counts at a rate set by the Baseline Update Threshold parameter. Make sure to match the
update rate to the intended application. If the update rate is too fast, the baseline will compensate for any changes
introduced by a finger, and the moving finger will not be detected. If the update rate is too slow, relatively slow
environmental changes may be mistaken for fingers. During development, you should verify the Baseline Update
Threshold settings.

4.2 Tuning the CSA_EMC User Module

Figure 4-3 is a flowchart that shows the tuning process of CSA_EMC parameters. CSA_EMC User Module parameters
can be separated into two broad categories : low-level (hardware) parameters and high-level parameters. The parameters
in these categories affect the behavior of the capacitive sensing system in different ways. There is , however, a
complementary relationship between the sensitivity of each sensor as determined by the hardware parameter settings and
many of the high-level parameter settings. When any hardware parameter is changed, you must make sure that any
corresponding high-level parameters are adjusted accordingly. Tuning of CSA_EMC User Module parameters should
always begin with the hardware parameters.

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 33

Figure 4-3. CSA_EMC User Module Parameters Tuning Flowchart

Measure Cp of sensors

using EP64134

Start

If max Cp < 45 pF set

Idac Range to 4X.

Otherwise set to 8X.

Enable Autocalibration

Set Precharge Source to

PRS

Set Prescaler according

to Table 4-2

Set Resolution according

to Figure 4-5 and

Table 4-3

Set Scanning Speed to

Fast

Set PRS Resolution to

12 bits if scan time >

380 µs, otherwise set to

8 bits.

Set Shield

Electrode Out

according to needs

of design

Establish digital

communication interface and

obtain raw counts from each

sensor during finger

activation cycle, for example.

Figure 4-6

Is SNR from all sensors

> 5:1?

Increase Resolution and/or

experiment with Scanning

Speed until optimal SNR is

obtained

Is SNR from all sensors

> 5:1?

Revise PCB design

according to AN2292 and

AN2318

No

No

Does scan time meet

design requirements?

Yes

Yes

Reduce Resolution or

use faster Scanning

Speed

No

Yes

Set Finger Threshold

to 75% of signal

Set Noise Threshold

to 40% of signal

Set BaselineUpdate

Threshold to double

the Noise Threshold

Set Sensors

Autoreset according to

needs of design

Set Hysteresis to 15%

of signal

Set Debounce

according to needs of

design

Set Negative Noise

Threshold to same

value as Noise

Threshold

Set Low Baseline

Reset to 10

Start

Hardware

Parameters

High-Level API

Parameters

4.3 Recommended CINT Value for CSA_EMC

Start the tuning process with the recommended C INT value of 1.2 nF. In the process of tuning, if you find that the sensor
signal is not adequate to get 5:1 SNR, you can increase C INT. The recommended maximum value of C INT is 5.6 nF. X7R or
NPO type capacitors are recommended for C INT stability over temperature and capacitor should have voltage rating not
less than 5 V.

4.4 Measuring Sensor CP

The first step in the tuning procedure is to measure the sensor parasitic capacitance (CP). The step-by-step procedure on
how to do this is as follows:

1. Set CPU_CLK equal to SysClk/2.

2. Set Clock equal to IMO/8.

3. Set Settling Time equal to 255.

4. Read back the IDAC code set by the algorithm for the particular sensor. The value will be stored in the array
CSA_EMC_baDACCodeBaseline[]

5. Measure the IDAC current corresponding to the IDAC code.

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 34

Create a PSoC Designer project with the following code. The code routes the IDAC to port pin P1[4].

//configure P1[4] to HI-Z

PRT1DM0 &= ~ (1<<4);

PRT1DM1 |= (1<<4);

//connect P1[4] to analog mux bus

MUX_CR1 = (1<<4);

// set IDAC to read back IDAC Code
IDAC_D = <IDAC CODE>

// turn ON IDAC

CS_CR2 = 0xD0;

Place a current meter between pin P1[4] and ground, and measure current. Let IMEASURE D be its value.

6. Calculate CP using the equation CP= IMEASURED/ ((IMO/8) * 1.3)

Sensor CP can also be measured using an LCR meter. Connect one terminal of the LCR meter to the sensor pin and the
other to GND to measure CP.

4.5 Estimating CSA_EMC Clock

Table 4-1 shows the recommended precharge clock frequency as a function of sensor CP. Set the CSA_EMC clock to get
the recommended precharge clock frequency. Precharge clock frequency depends on the selected IMO, CSA_EMC clock
setting, and the CP of the sensor.

Make sure that the precharge clock frequency does not go higher than the recommended value.

Table 4-1. CSA_EMC Clock Setting Based on CP and IMO

CP (pF) CSA_EMC Clock

IMO = 24 MHz IMO = 12 MHz IMO = 6 MHz

< 5 IMO/2 IMO IMO

5 to 10 IMO/4 IMO/2 IMO

10 to 15 IMO/4 IMO/4 IMO/2

15 to 20 IMO/4 IMO/4 IMO/2

20 to 25 IMO/16 IMO/8 IMO/4

25 to 30 IMO/16 IMO/8 IMO/4

30 to 35 IMO/16 IMO/8 IMO/4

35 to 40 IMO/16 IMO/8 IMO/4

40 to 45 IMO/16 IMO/8 IMO/4

45 to 50 IMO/16 IMO/8 IMO/8

4.6 Setting Settling Time

Minimum value for the settling time parameter is estimated using Equation 8.

 Equation 8

Where:

 CINT = Value of integration capacitor

 Clock = Precharge clock frequency (CSA_EMC Clock)

 CP = Sensor parasitic capacitance value

 FCPU = CPU clock frequency

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 35

4.7 Monitoring CapSense Data

See CapSense Data Viewing Tools.

4.8 Methods to Increase SNR

This section explains the methods available to increase SNR.

4.8.1 Reduce Noise
One way to increase SNR is to reduce the noise counts. You can use one of the following options to achieve this:

 Using software filters – see Software Filtering for details.

 Enabling Spread Spectrum – see Spread Spectrum for details.

 Increasing Immunity Level – see Freq Num for details.

4.8.2 Increase Signal

Improve SNR by increasing the signal, in one of two ways :

 Increase the value defined by macro CSA_EMC_BASELINE. This macro is located in file CSA_EMC.inc. By default,

the macro is assigned a value of 0x0800

 Increase the value of C INT capacitor

4.9 Tuning the CSD User Module

Figure 4-4 is a flowchart showing the tuning process for CSD UM parameters. CSD UM parameters can be separated into
two broad categories: low-level (hardware) parameters and high-level API parameters. The parameters in these
categories affect the behavior of the capacitive sensing system in different ways. However, there is a complementary
relationship between the sensitivity o f each sensor as determined by the hardware parameter settings and many of the
high-level parameter settings. You must consider this fact when you change any hardware parameter to make sure that
the corresponding high-level parameters are adjusted accordingly. Tuning CSD User Module parameters should always
begin with the hardware parameters.

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 36

Figure 4-4. Tuning the CSD User Module

Measure Cp of sensors

using EP64134

Start

If max Cp < 45 pF set

Idac Range to 4X.

Otherwise set to 8X.

Enable Autocalibration

Set Precharge Source to

PRS

Set Prescaler according

to Table 4-2

Set Resolution according

to Figure 4-5 and

Table 4-3

Set Scanning Speed to

Fast

Set PRS Resolution to

12 bits if scan time >

380 µs, otherwise set to

8 bits.

Set Shield

Electrode Out

according to needs

of design

Establish digital

communication interface and

obtain raw counts from each

sensor during finger

activation cycle, for example.

Figure 4-6

Is SNR from all sensors

> 5:1?

Increase Resolution and/or

experiment with Scanning

Speed until optimal SNR is

obtained

Is SNR from all sensors

> 5:1?

Revise PCB design

according to AN2292 and

AN2318

No

No

Does scan time meet

design requirements?

Yes

Yes

Reduce Resolution or

use faster Scanning

Speed

No

Yes

Set Finger Threshold

to 75% of signal

Set Noise Threshold

to 40% of signal

Set BaselineUpdate

Threshold to double

the Noise Threshold

Set Sensors

Autoreset according to

needs of design

Set Hysteresis to 15%

of signal

Set Debounce

according to needs of

design

Set Negative Noise

Threshold to same

value as Noise

Threshold

Set Low Baseline

Reset to 10

Start

Hardware

Parameters

High-Level API

Parameters

Hardware parameters configure the hardware that the CSD method uses to convert the physical capacitance of each
sensor into a digital code. This section describes these parameters and provides guidance about how each should be
tuned based on system characteristics and other parameters.

By default, hardware parameters are global settings that apply to all CapSense sensors in a design. In designs where
total parasitic capacitance of each sensor (CP), sensor sensitivity, or both, vary over a wide range, there may not be global
hardware parameter settings that are suitable for all sensors. In such cases, the respective hardware parameters for each
sensor can be set by calling the SetIdacValue(), SetPrescaler(), and SetScanMode() API functi ons before calling the
ScanSensor() API function.

Table 4-2 and Table 4-4 provide tuning recommendations for several key hardware parameters based on sensor C P. CP
values depend on characteristics of the PSoC, PCB layout, and proximity of other components in the assembled product.
Because of this, CP must be measured in its original position with the system in its final assembled state; that is, in the
same enclosure and with the same overlay as the system will have in service. The best way to measure C P is to use the
code example "Measuring Absolute Sensor Capacitance with a CY8C20xx6A CapSense Controller" available in the
CapSense Code Examples Design Guide. This project measures the absolute capacitance of each sensor in a system
using the PSoC itself, thus taking into account all factors affecting C P. See the documentation associated with the code
example for instructions on its setup and use.

4.9.1 Recommended CMOD Value for CSD

The recommended CMOD value for a CSD-based design is 2.2 nF. X7R or NPO type capacitors are recommended for C INT
stability over temperature and capacitor should have voltage rating not less than 5 V.

http://www.cypress.com/?rID=66647

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 37

4.9.2 ShieldElectrodeOut
Enable the ShieldElectrodeOut for this design.

4.9.3 IDAC Range
For projects where the maximum sensor CP is less than 45 pF, use 4X; otherwise, use 8X.

4.9.4 Autocalibration
Autocalibration should always be set to Enabled in CY8C20xx6A CSD designs. The autocalibration algorithm can
successfully set the IDAC if the prescaler is set properly and CMOD is the recommended size.

4.9.5 IDAC Value
This parameter determines the current output of IDAC when autocalibration is disabled. When autocalibration is enabled, as
recommended, this parameter is overridden and has no effect. When autocalibration is disabled, raising this parameter
lowers the raw count baseline and vice versa.

4.9.6 Precharge Source
This parameter selects the sensor switching clock source. The available options are Prescaler, which uses the IMO
through a divider, or PRS, which passes the divided IMO clock through a pseudo random generator, providing a spread -
spectrum clock. PRS provides superior noise immunity and lower noise emissions and is therefore the recommend default
setting for Precharge Source. In some instances, the prescaler precharge source can provide higher SNR. However,
when using copper circuitry, this SNR improvement is usually marginal and rarely justifies foregoing the benefits of PRS.

4.9.7 Prescaler

Prescaler is the divider applied to the IMO to develop the precharge clock. This is the most critical hardware UM
parameter for properly tuning a CSD design. Prescaler depends on the selected precharge source, IMO, and the CP of the
sensors being scanned. Table 4-2 gives recommended prescaler settings based on these parameters.

Table 4-2. Prescaler Setting Based on Precharge Source, IMO, and CP

CP (pF) Precharge Source = PRS Precharge Source = Prescaler

Prescaler

IMO = 24 MHz

Prescaler

IMO = 12 MHz

Prescaler

IMO = 6 MHz

Prescaler

IMO = 24 MHz

Prescaler

IMO = 12 MHz

Prescaler

IMO = 6 MHz

<6 1 Note 1 Note 1 2 1 1

7–11 2 1 Note 1 4 2 1

12–15 2 1 Note 1 4 2 1

16–19 4 2 1 8 4 2

20–22 4 2 1 8 4 2

23–26 4 2 1 8 4 2

27–30 4 2 1 8 4 2

31–34 4 2 1 8 4 2

35–37 8 4 2 16 8 4

38–41 8 4 2 16 8 4

42–45 8 4 2 16 8 4

46–49 8 4 2 16 8 4

50–52 8 4 2 16 8 4

53–56 8 4 2 16 8 4

57–60 8 4 2 16 8 4

Note 1 This combination of Precharge Source, Prescaler, and CP is not recommended.

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 38

4.9.8 Resolution

Available choices are 9 to 16 bits. Raising the resolution raises sensitivity, SNR, and noise immunity at the expense of
scan time. The maximum raw count (full scale range) for scanning resolution n is 2

n
–1. Table 4-3 gives recommended

resolution settings based on CP and the finger capacitance CF. CF is the change in capacitance of a sensor when a finger
is placed on the sensor. CF depends on overlay thickness, sensor size, and proximity of the sensor to other large
conductors. Figure 4-5 gives CF values as a function of overlay thickness and circular sensor diameter.

Figure 4-5. Finger Capacitance (CF) Based on Overlay Thickness and Circular Sensor Diameter

Table 4-3. Resolution Setting Based on Finger Capacitance and CP

CP (pF) CF = 0.1pF CF = 0.2 pF CF = 0.4pF CF = 0.8pF

<6 12 11 10 9

7–12 13 12 11 10

13–24 14 13 12 11

25–48 15 14 13 12

>49 16 15 14 13

4.9.9 Scanning Speed
This parameter controls the integration time for each LSB of the scan result. The choices are Ultra Fast, Fast, Normal,
and Slow. Fast is generally a good starting point. In some, but not all, cases slower scanning speed can yield higher SNR
at the expense of longer scan time and more power consumption. Table 4-4 shows the actual scan time in microseconds
for a single sensor based on resolution and scanning speed.

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 39

Table 4-4. Scan Time for a Single Sensor in µs Based on Resolution and Scanning Speed

Resolution

(bits)

Scanning Speed

Ultra Fast Fast Normal Slow

9 57 78 125 205

10 78 125 205 380

11 125 205 380 720

12 205 380 720 1400

13 380 720 1400 2800

14 720 1400 2800 5600

15 1400 2800 5600 11000

16 2800 5600 11000 22000

4.9.10 High-Level API Parameters
High-level API parameters determine the behavior of high-level firmware algorithms that discriminate between sensor
activations and noise, and compensate for signal drift caused by environmental conditions. To determine proper values for
these parameters, you must establish a digital communication interface with the system to monitor raw counts, baseline,
and difference counts during a finger activation event for each sensor. This data is stored in arrays named
CSD_waSnsBaseline[], CSD_waSnsResult[], and CSD_waSnsDiff[], respectively. The high-level API parameter settings
are based primarily on ambient noise and finger signal strength, as indicated by this data. Noise and signal strength
depend on EMI environment, PCB layout, overlay thickness, and other physical characteristics of the system. Therefore,
the data used as the basis for setting these parameters must be taken in its original position with the system in its final
assembled state and in the same EMI environment as will exist in use.

Figure 4-6 shows the typical raw counts obtained from a sensor during a finger activation cycle; that is, the sensor is
activated and then deactivated. Labels are superimposed over the data that indicate how noise and signal are to be
calculated based on the raw data. Where appropriate, the high-level parameter descriptions that follow include information
about how to set each parameter based on these noise and signal values. According to CapSense design bes t practice,
the ratio of signal-to-noise (SNR) must be at least 5:1 for robust CapSense system operation. If SNR is less than 5:1, the
hardware parameters must be adjusted, the PCB layout changed according to the guidelines of Getting Started with
CapSense to raise SNR to at least 5:1, or both.

Figure 4-6. Typical Raw Counts from a Sensor during Finger Activation Cycle

Noise

Signal

http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=48787

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 40

4.9.11 Set High-Level Parameters
The following recommendations are a starting place for selecting the optimal parameter settings:

 Finger Threshold: Set to 75 percent of raw counts with sensor ON

 Noise Threshold: Set to 40 percent of raw counts with sensor OFF

 Negative Noise Threshold : Set equal to (Noise Threshold/2)

 Baseline Update Threshold: Set to two times Noise Threshold

 Hysteresis: Set to 15 percent of raw counts with sensor ON

 Low Baseline Reset: Set to 50

 Sensors Autoreset: Based on design requirements

 Debounce: Based on design requirements

4.10 Using the SmartSense User Module

SmartSense allows you to create a CapSense design that requires no tuning, as long as the sensor parasitic capacitance
is in the range from 5 pF to 45 pF with a minimum 0.1-pF finger touch. You can create a SmartSense design by using the
SmartSense User Module in PSoC Designer 5.1. This section also shows you how to migrate an existing CSD CapSense
design to SmartSense.

4.10.1 Guidelines for SmartSense
Follow these guidelines when using the SmartSense User Module in an application:

 SmartSense requires that the capacitive user interface design follows the layout and system design best practi ces
documented in the previous sections of this design guide.

 All of the CSD User Module parameters (such as IDAC value, prescaler period, clock divider, scan speed, resolution)
are determined at runtime by the SmartSense User Module. You should not use APIs that modify these CSD
parameters in firmware, unless you know exactly what effect it has in your design.

 To migrate an existing design from CSD to SmartSense,

 Ensure that all APIs that set or modify the CSD parameters are first removed from the program .

 Ensure that the parasitic capacitance of all CapSense sensors in the design is between 5 pF and 45 pF over
environmental and PCB production process variations.

 Make sure recommended CMOD capacitor (X7R, 2.2-nF, voltage rating more than 5 V) is connected to the CMOD
port pin selected in the user module wizard.

4.10.2 Understanding the Difference
The differences between the SmartSense User Module and the standard CSD User Module are:

 The SmartSense User Module supports the same APIs that a standard CSD User Module supports. Thus, no change
is required in placing, configuring, starting, or calling other APIs except the user module instance name.

 There is no need to set any user module parameters for tuning, as all the parameters related to tuning are
automatically set at runtime by the SmartSense User Module.

 The CMOD capacitor value is restricted to 2.2 nF. Use of an X7R capacitor with a voltage rating higher than 5 V is
recommended in all CapSense applications.

 The SmartSense algorithm maintains the signal SNR of each sensor between 5:1 and 11:1 to ensure robust
CapSense operation while maximizing performance.

 The scanning time of the SmartSense User Module is restricted by the algorithm to be between 410 µs and 2.8 ms
per sensor in 24-MHz operating mode, based on the parasitic capacitance of the sensor.

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 41

4.10.3 Recommended CCMOD Value for SmartSense

The recommended CCMOD value for a SmartSense-based design is 2.2 nF. X7R or NPO type capacitors are recommended
for CINT stability over temperature. The capacitor should have voltage rating not less than 5 V.

4.10.4 SmartSense User Module Parameters
Only four parameters must be set for this user module. These are:

 Sensors Autoreset

 Debounce

 Modulator Capacitor Pin

 Sensitivity Level

4.10.4.1 Sensors Autoreset

This parameter determines whether the baseline is updated at all times or only when the signal difference is below the
noise threshold. When set to Enabled, the baseline is updated constantly. This setting limits the maximum time that a
sensor may remain on (typically it is 5 to 10 seconds), but it prevents the sensors from permanently turning on when the
raw count suddenly rises without anything touching the sensor because of any failure condition of the system.

4.10.4.2 Debounce

The Debounce parameter adds a debounce counter to the sensor’s active transition. For the sensor to be declared as
active from inactive state, a finger touch signal should be present on the sensor for debounce number of consecutive
scans. This parameter affects all of the sensors similarly.

4.10.4.3 Modulator Capacitor Pin

This parameter selects the pin to which the 2.2 nF/X7R/voltage rating more than 5 V CMOD capacitor is connected. The
available pins are P0[1] and P0[3].

Note An external 2.2-nF capacitor is mandatory for SmartSense to work correctly.

4.10.4.4 Sensitivity Level

Sensitivity is used to increase or decrease strength of signal from a sensor. A lower value for sensitivity (0.1 pF) leads to a
stronger signal from the sensor. Designs with thicker overlays require stronger signals from sensors for proper
implementation. The available options for sensitivity selection are High (0.1 pF), Medium High (0.2 pF), Medium Low (0.3
pF) and Low (0.4 pF).

To produce a stronger signal from a sensor (High sensitivity), the SmartSense UM must use more time for sensor
scanning. This means that setting 0.1-pF (High) sensitivity for a sensor consumes more scan time compared to the sensor
that has the sensitivity level set to 0.2 pF (Medium High).

Tuning best practice is to find the highest sensitivity value for the sensor to produce the required 5:1 SNR. You may start
the tuning with the highest sensitivity value (0.4 pF) and reduce the value as required to meet the 5:1 SNR

4.10.5 SmartSense_EMC User Module Specific Guidelines
All guidelines applicable to the SmartSense User Module apply to the SmartSense_EMC User Module. For general
guidelines about CapSense design and SmartSense-based design, see the CapSense Getting Started Guide. This
section documents a few important aspects of the SmartSense_EMC User Module.

4.10.5.1 Sensor Scan Time, Response Time, and Memory Utilization

When a sensor is implemented using the SmartSense_EMC User Module, the scan time of a sensor, response time of the
sensor, and RAM memory usage depends on the immunity mode selected in the user module.

 With immunity mode Medium, sensor scan time is two times higher than a sensor with immunity mode Low. With
immunity mode High, the scan time of a sensor is three times higher than the scan time of a sensor with immunity
mode Low.

 Increase in scan time proportionally increases the response time of a sensor. With immunity mode Medium, response
time is two times higher than that of a sensor with immunity mode Low. Similarly, response time of a sensor with
immunity mode High is three times higher than that of a sensor with immunity mode Low.

http://www.cypress.com/?id=1575&rtID=435

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 42

 To implement a robust electromagnetic compliant algorithm, the SmartSense_EMC User Module uses RAM memory.
As a result, the highest immunity mode (High) needs approximately three times the RAM memory used in immunity
mode Low. Immunity mode Medium uses only about two times more RAM memory than that of immunity mode Low.

4.10.5.2 IMO Tolerance and Time Critical Task

IMO tolerance for SmartSense_EMC-enabled parts is +5% and –20%.

 When implementing time-critical algorithms and logic, you must consider IMO tolerance to make sure that the
firmware logic or algorithm does not break.

 If a project uses interrupts, you need to consider IMO tolerance while analyzing interrupt latency, ISR execution time,
and so on.

 Every timing analysis that depends on the IMO (for example, a Timer clocked by IMO, delay created using loop in
firmware, API execution time) must take into account the IMO tolerance to ensure robust application firmware.

4.10.5.3 I2C Operating Speed

I
2
C interface operation frequency is limited to a maximum of 80 percent of the actual operating frequency of the user

module in the SmartSense_EMC-enabled parts. This limitation is caused by the 20-percent IMO tolerance.

 This means, when a clock speed of 400 kHz is selected in the I
2
C User Module, the I

2
C interface can be operated to

maximum of 320 kHz. Similarly, operating frequency is limited to a maximum of 80 kHz and 40 kHz when 100 -kHz
and 50-kHz clock modes, respectively, are selected in the I

2
C User Module.

 While using the I
2
C slave interface, the master clock should operate within the reduced specification mentioned

earlier. Not doing this will lead to data corruption, I
2
C bus conjunction, or inconsistent behavior from the I

2
C User

Module.

 Using the I
2
C master module impacts only the throughput of the interface.

4.10.6 Scan Time of a CapSense Sensor
To maintain the consistent finger response sensitivity over a wide range of parasitic capacitance, the SmartSense User
Module automatically determines the hardware parameters of the user module. As a result of this, sensor scan time does
not remain constant. For a design in mass production, it can vary based on the parasitic capacitance variation of the PCB.

The total scan time of a sensor is decided by four factors. They are parasitic capacitance of sensor, IMO frequency, CPU
operating frequency, and sensitivity level of the SmartSense User Module.

Scan time of a sensor can be found using Equation 9 and the following tables.

 Equation 9

The following tables show the sampling time value with various IMO and sensitivity levels.

Table 4-5. Sampling Time for a Sensor with IMO = 24 MHz

Sensitivity = 0.2 pF Sensitivity = 0.3 pF Sensitivity = 0.4 pF

CP (pF) ST (µs) CP (pF) ST (µs) CP (pF) ST (µs)

8 to 10 340 8 to 17 340 8 to 10 170

10 to 23 680 17 to 35 680 10 to 23 340

23 to 41 1360 35 to 41 1360 23 to 41 680

41 to 45 2730 41 to 45 2730 41 to 45 1360

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 43

Table 4-6. Sampling Time for a Sensor with IMO = 12 MHz

Sensitivity = 0.2 pF Sensitivity = 0.3 pF Sensitivity = 0.4 pF

CP (pF) ST (µs) CP (pF) ST(µs) CP (pF) ST (µs)

8 to 10 680 8 to 17 680 8 to 10 340

10 to 23 1360 17 to 35 1360 10 to 23 680

23 to 41 2730 35 to 41 2730 23 to 41 1360

41 to 45 5460 41 to 45 5460 41 to 45 2730

Table 4-7. Sampling Time for a Sensor with IMO = 6 MHz

Sensitivity = 0.2 pF Sensitivity = 0.3 pF Sensitivity = 0.4 pF

CP (pF) ST (µs) CP (pF) ST(µs) CP (pF) ST (µs)

8 to 11 680 8 to 10 680 8 to 11 680

11 to 23 1360 10 to 17 1360 11 to 23 1360

23 to 42 2730 17 to 35 2730 23 to 41 2730

42 to 45 5460 35 to 41 5460 41 to 45 5460

 41 to 45 10920

Table 4-8 shows the value for processing time with various CPU frequencies.

Table 4-8. Processing Time for a Sensor

CPU CLK Processing Time (PT) in µs

24 71

12 142

6 284

3 568

For example, if a CapSense system is designed with a 24-MHz IMO frequency, a 6-MHz CPU clock (IMO/4), and a
SmartSense sensitivity level of 0.3 pF, the scan time of the sensor that has parasitic capacitance around 15 pF can be
calculated from the previous tables using Equation 9.

Sampling time for the previously mentioned configuration (24 MHz of IMO, 0.3 pF of sensitivity) is chosen from Table 4-5;
it is 680 µs. Processing time for the previously mentioned configuration (CPU clock of 6 MHz) Is chosen from Table 4-8; it
is 284 µs.

Thus, the total scan time in this configuration is 680 + 284 = 964 µs. Scan time for more than one sensor is the sum of the
scan time of each sensor.

4.10.7 SmartSense Response Time
Consider the following application with standard CSD along with typical CapSense scanning firmware.

 Three CapSense sensors with parasitic capacitance of sensor between 5 pF and 10 pF

 IMO of 12 MHz and CPU clock of 12 MHz

 Sensor sensitivity level of 0.4 pF

 Debounce = 3

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 44

According to the previous tables, scanning of each sensor requires 482 µs and three sensors have a scan time of
1.45 ms. The following firmware example requires 1 ms for additional firmware execution; thus, the loop execution time is
2.45 ms.

while (1)

{

 SmartSense_ScanAllSensors();

 SmartSense _UpdateAllBaselines();

 if(SmartSense _bIsAnySensorActive())

 {

 //1ms firmware routines

 }

}

This means that, when a CapSense sensor is activated, firmware produces the sensor ON status within 7.35 ms (the
sensor should be active for Debounce number of consecutive scans). This is often referred to as the response time of a
CapSense system.

If the scan time varies with respect to the parasitic capacitance to maintain consistent, what is the impact on response
time if the parasitic capacitance of the sensor changes because of the process variation? Response time may be
increased (slow response) in this case. This can have a negative impact on sensor performance. Guidelines to build a
robust firmware design are provided in the next section.

4.10.8 Method to Ensure Minimum SNR Using the SmartSense_EMC User Module
SmartSense_EMC is an advanced electromagnetic compliance design of a CSD-based SmartSense User Module that
does not require a tedious tuning process. However there are two simple steps to ensure robustness of the design while
using the SmartSense_EMC UM.

1. Set up a real-time monitoring tool to monitor CapSense User Module parameters to measure the sensor signals. The
sensor raw count (SmartSense_EMC_waSnsResult), sensor normalized signal (SmartSense_EMC_baSnsSignal),
and sensor finger threshold (SmartSense_EMC_baBtnFThreshold) must be observed during the tuning process. Do
not use the LCD or any other numerical display to monitor data because they are slow and do not allow visualizing
the data dynamics. Recommended data monitoring tools are multi -chart or the I

2
C USB Bridge Control panel.

2. Set the sensitivity level to 0.4 pF (Low), and calculate the SNR. Figure 4-7 shows a typical raw count graph with a
finger touch. According to CapSense best practices, SNR for a robust design should be greater than 5:1. If measured
SNR is more than 10:1, reduce sensitivity level value to the next possible step until SNR is more than 5:1 and less
than 10:1.

Figure 4-7. Raw Count Graph for a Typical Sensor with a Finger Touch

3. If you are using automatic finger threshold in the design, the process is complete with completion of the previous
step. If you are using flexible finger threshold, you should also set finger threshold to complete the process. To set
finger threshold, monitor the sensor signal (SmartSense_EMC_baSnsSignal) and the set finger threshold value to
80 percent of the sensor signal value when the sensor is touched. This completes the process.
Figure 4-8 shows a typical sensor signal and finger threshold value.

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 45

Figure 4-8. Sensor Signal for a Typical Sensor with a Finger Touch

4.10.9 Firmware Design Guidelines
The response time of the CapSense sensors may change due to the increased parasitic capacitance of the sensor. It is
also important to watch the loop execution time (see the following example code), which may also increase. When the
parasitic capacitance of all sensors is less than 10 pF, the firmware routine is executed at a rate of 2.45 ms. This rate will
change if the sensor scan time is increased because of the increase in the parasitic capacitance of the sensor b ased on
the process variation.

The following is example code for toggling a port pin based on the main loop execution time.

while (1)

{

 SmartSense_ScanAllSensors();

 SmartSense_UpdateAllBaselines();

 if(SmartSense_bIsAnySensorActive())

 {

 //1ms firmware routines

 }

 PRT0DR_Shadow ^= 0x01;

 PRT0DR = PRT0DR_Shadow;

}

The period of the signal on the Port_0[1] pin is 4.9 ms (the period is twice the loop time as the port pin is toggled). If the
parasitic capacitance of one sensor is increased to approximately 15 pF, the scan time will change to 1.78 ms; thus, the
period of the signal on Port_0[1] will be 5.6 ms.

If the parasitic capacitance of the sensor is close to the boundary of the SmartSense capacitance banks (for example,
9 pF, which is very close to the 10-pF boundary), SmartSense may choose a neighboring scan time in an application
because of process variation. Because of this, different production parts of the same design can have two different main
loop execution times and response times.

Based on the above discussions, the firmware should not rely on the scan time of the sensor for implementing other
features (such as, software PWM, software delay, and so on). Programs implementing a watchdog timer (WDT) should
consider this fact while setting the WDT expiration time

A simple firmware implementation example to get a consistent main loop execution time using the Timer16 User Module
follows.

// Main program

BYTE bTimerTicks = 0;

#pragma interrupt_handler myTimer_ISR_Handler;

void myTimer_ISR_Handler(void);

 CapSense Performance Tuning with User Modules

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 46

void main()

{

M8C_EnableGInt;

SmartSense_Start();

SmartSense_ScanAllSensors();

SmartSense_SetDefaultFingerThresholds() ;

Timer16_EnableInt();

Timer16_SetPeriod (TIMEOUT_10MS) ;

Timer16_Start();

while(1)

{

 /* Scan all 3 sensors and update

 Baseline */

 SmartSense_ScanAllSensors();

 SmartSense_UpdateAllBaselines();

 /* Wait till timer expires or

 sleep here */

 while (bTimerTicks != 1) ;

 bTimerTicks = 0 ;

 if(CSDAUTO_bIsAnySensorActive())

 {

 //1ms firmware routines

 }

 // Toggle Port_0[1]

 PRT0DR_Shadow ^= 0x01 ;

 PRT0DR = PRT0DR_Shadow ;

 }

}

// Timer16 ISR program

void myTimer_ISR_Handler(void)

{

bTimerTicks++;

}

In the previous example, the program waits for the Timer to expire even if the sensor scanning is complete. The period of
the Timer should be chosen based on the worst-case main loop execution time. This is the sum of the worst-case scan
times of the individual CapSense sensors. If the parasitic capacitance of the sensor is close to the boundary of the

SmartSense capacitance bank, choose higher scan time (using Table 4-6) for the calculation.

The SmartSense User Module enables you to easily implement the capacitive touch-sensing user interface into a system.
It removes the difficulties of the tuning process and also helps to increase the yield in production against manufacturing
process variations of the PCB, and other variations. Therefore, the preferred option is to migrate the existing CSD -based
CapSense designs to SmartSense and to use SmartSense for new designs.

The main loop execution time and scan time of SmartSense vary based on the process variations. Though it does not
affect the performance of CapSense in any way, the firmware developer should consider this when implementing
CapSense PLUS applications with SmartSense Auto-Tuning technology.

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 47

5. Design Considerations

When designing capacitive touch-sense technology into your application, it is crucial to keep in mind that the CapSense
device exists within a larger framework. Careful attention to every level of detail from PCB layout to user interface to end-
use operating environment will lead to robust and reliable system performance. For more in-depth information, see the
Getting Started with CapSense.

5.1 Overlay Selection

In CapSense Fundamentals, Equation 1 is presented for finger capacitance

Where:

ε0 = Free space permittivity

εr = Dielectric constant of overlay

A = Area of finger and sensor pad overlap (mm
2
)

D = Overlay thickness (mm)

To increase CapSense signal strength, choose an overlay material with a higher dielectric constant, decrease the overlay
thickness, and increase the button diameter.

Table 5-1. Overlay Material Dielectric Strength

Material Breakdown Voltage (V/mm) Min. Overlay Thickness at 12 kV (mm)

Air 1200–2800 10

Wood – dry 3900 3

Glass – common 7900 1.5

Glass – Borosilicate (Pyrex®)) 13,000 0.9

PMMA Plastic (Plexiglas®) 13,000 0.9

ABS 16,000 0.8

Polycarbonate (Lexan®) 16,000 0.8

Formica 18,000 0.7

FR-4 28,000 0.4

PET Film – (Mylar®) 280,000 0.04

Polymide f ilm – (Kapton®) 290,000 0.04

Conductive material cannot be used as an overlay because it interferes with the electric field pattern. For this reason, do
not use paints containing metal particles in the overlay.

An adhesive is used to bond the overlay to the CapSense PCB. A transparent acrylic adhesive film from 3M™ called
200MP is qualified for use in CapSense applications. This special adhesive is dispensed from paper -backed tape rolls
(3M™ product numbers 467MP and 468MP).

http://www.cypress.com/?rID=48787

 Design Considerations

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 48

5.2 ESD Protection

Robust ESD tolerance is a natural by-product of careful system design. By considering how contact discharge will occur in
your product, particularly in your user interface, it is possible to withstand an 18-kV discharge event without incurring any
damage to the CapSense controller.

CapSense controller pins can withstand a direct 2-kV event. In most cases, the overlay material provides sufficient ESD
protection for the controller pins. Table 5-1 lists the thickness of various overlay materials required to protect the
CapSense sensors from a 12-kV discharge, as specified in IEC 61000-4-2. If the overlay material does not provide
sufficient protection, apply ESD countermeasures in the following order: Prevent, Redirect, Clamp.

5.2.1 Prevent

Make sure that all paths on the touch surface have a breakdown voltage greater than potential high -voltage contacts.
Also, design your system to maintain an appropriate distance between the CapSense controller a nd possible sources of
ESD. If it is not possible to maintain adequate distance, place a protective layer of a high breakdown voltage material
between the ESD source and CapSense controller. One layer of 5-mil-thick Kapton

®
 tape will withstand 18 kV.

5.2.2 Redirect
If your product is densely packed, it may not be possible to prevent the discharge event. In this case, you can protect the
CapSense controller by controlling where the discharge occurs. A standard practice is to place a guard ring on the
perimeter of the circuit board that is connected to the chassis ground. As recommended in PCB Layout Guidelines,
providing a hatched ground plane around the button or slider sensor can redirect the ESD event away from the sensor
and CapSense controller.

5.2.3 Clamp
Because CapSense sensors are purposely placed close to the touch surface, it may not be practical to redirect the
discharge path. In this case, including series resistors or special-purpose ESD protection devices may be appropriate.

The recommended series resistance value is 560 Ω.

A more effective method is to provide special-purpose ESD protection devices on the vulnerable traces. ESD protection
devices for CapSense need to be low capacitance. Table 5-2 lists devices recommended for use with CapSense
controllers.

Table 5-2. Low-Capacitance ESD Protection Devices Recommended for CapSense

ESD Protection device
Input Capacitance Leakage Current

Contact Discharge
Maximum Limit

Air Discharge
Maximum Limit Manufacturer Part Number

Littlefuse SP723 5 pF 2 nA 8 kV 15 kV

Vishay VBUS05L1-DD1 0.3 pF 0.1 µA < ±15 kV ±16 kV

NXP NUP1301 0.75 pF 30 nA 8 kV 15 kV

5.3 Electromagnetic Compatibility (EMC) Considerations

5.3.1 Radiated Interference
Radiated electrical energy can influence system measurements and potentially influence the operation of the processor
core. The interference enters the PSoC chip at the PCB level, through CapSense sensor traces and any other digital or
analog inputs. Layout guidelines for minimizing the effects of RF interference include:

 Ground Plane: Provide a ground plane on the PCB.

 Series Resistor: Place series resistors within 10 mm of the CapSense controller pins .

 The recommended series resistance for CapSense input lines is 560 Ω.

 The recommended series resistance for communication lines such as I
2
C and SPI is 330 Ω.

 Trace Length: Minimize trace length whenever possible.

 Current Loop Area: Minimize the return path for current. Hatched ground instead of solid fill should be provided
within 1 cm of the sensors and traces to reduce the impact of parasitic capacitance.

 Design Considerations

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 49

 RF Source Location: Partition systems with noise sources such as LCD inverters and switched-mode power
supplies (SMPS) to keep them separated from CapSense inputs . Shielding the power supply is another common
technique for preventing interference.

5.3.2 Radiated Emissions

Selecting a low frequency for the switched capacitor clock helps to reduce radiated emissions from the CapSense sensor.
This clock is controlled in firmware using the Prescaler option. Increasing the Prescaler value decreases the frequency of
the switching clock.

5.3.3 Conducted Immunity and Emissions
Noise entering a system through interconnections with other systems is referred to as conducted noise. These
interconnections include power and communication lines. Because CapSense controllers are low-power devices,
conducted emissions must be avoided. The following guidelines will help reduce conducted emission and immunity:

 Use decoupling capacitors as recommended by the datasheet.

 Add a bidirectional filteron the input to the system power supply. This is effective for both conducted emissions and
immunity. A pi-filter can prevent power supply noise from effecting sensitive parts, while also preventing the switching
noise of the part from coupling back onto the power planes.

 If the CapSense controller PCB is connected to the power supply by a cable, minimize the cable length and consider
using a shielded cable.

 Place a ferrite bead around power supply or communication lines to filter out high-frequency noise.

5.4 Software Filtering

Using software filters is one of the techniques for dealing with high levels of system noise. Table 5-3 lists the types of
filters that are useful for CapSense.

Table 5-3. Table of CapSense Filters

Type Description Application

Average Finite impulse response f ilter (no feedback) with
equally weighted coeff icients

Periodic noise from pow er supplies

IIR Infinite impulse response f ilter (feedback) w ith a
step response similar to an RC filter

High-frequency white noise (1/f noise)

Median Nonlinear f ilter that computes median input value
from a buffer of size N

Noise spikes from motors and sw itching power supplies

Jitter Nonlinear f ilter that limits current input based on
previous input

Noise from thick overlay (SNR < 5:1), especially useful for
slider centroid data

Event-Based Nonlinear f ilter that causes a predefined
response to a pattern observed in the sensor
data

Commonly used during nontouch events to block CapSense
data transmission.

Rule-Based Nonlinear f ilter that causes a predefined

response to a pattern observed in the sensor
data

Commonly used during normal operation of the touch surface

to respond to special scenarios such as accidental
mult ibutton selection

Table 5-4 details the RAM and flash requirements for different software filters. The amount of flash required for each filter
type depends on the performance of the compiler. The requirements listed here are for both the ImageCraft compiler and
the ImageCraft Pro compiler.

 Design Considerations

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 50

Table 5-4. RAM and Flash Requirements

Filter Type Filter Order RAM (Bytes per

sensor)

Flash (Bytes)

ImageCraft Compiler

Flash (Bytes)

ImageCraft Pro Compiler

Average 2–8 6 675 665

IIR 1 2 429 412

2 6 767 622

Median 3 6 516 450

5 10 516 450

Jitter f ilter on Raw Counts N/A 2 277 250

Jitter f ilter on slider centroid N/A 2 131 109

5.5 Power Consumption

5.5.1 System Design Recommendations

For many designs, minimizing power consumption is an important goal. There are several ways to reduce the power
consumption of your CapSense capacitive touch-sensing system.

 Set GPIO drive mode for low power.

 Turn off the high-power blocks.

 Optimize CPU speed for low power.

 Operate at a lower VDD.

In addition to these suggestions, applying the sleep-scan method can be very effective.

5.5.2 Sleep-Scan Method
In typical applications, the CapSense controller does not need to always be in the active state. The device can be put into
the sleep state to stop the CPU and the major blocks of the device. Current consumed by the device in sleep state is
much lower than the active current.

The average current consumed by the device over a long period can be calculated by using the following equation.

 Equation 10

The average power consumed by the device can be calculated as follows:

 Equation 11

5.5.3 Response Time versus Power Consumption
As illustrated in Equation 11, the average power consumption can be reduced by decreasing IAVE or VDD. IAVE may be
decreased by increasing sleep time. Increasing sleep time to a very high value will lead to poor CapSense button
response time. As a result, the sleep time must be based on system requirements.

In any application, if both power consumption and response time are important parameters to be considered, an optimized
method can be used that incorporates both continuous -scan and sleep-scan modes. In this method, the device spends
most of its time in sleep-scan mode where it scans the sensors and goes to sleep periodically, as explained in the
previous section, thereby consuming less power. When a user touches a sensor to operate the system, the device jumps
to continuous-scan mode where the sensors are scanned continuously without invoking sleep, giving good response time.
The device remains in continuous-scan mode for a specified timeout period. If the user does not operate any sensor
within this timeout period, the device jumps back to the sleep-scan mode.

 Design Considerations

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 51

5.5.4 Measuring Average Power Consumption

The following instructions describe how to determine average power consumption when using the sleep -scan method:

1. Build a project that scans all of the sensors without going to sleep (continuous-scan mode). Include a pin-toggle
feature in the code before scanning the sensors. Toggling the state of the output pin serves as a time marker that can
be tracked with an oscilloscope.

2. Download the project to the CapSense device and measure the current consumption. Assign the measured current to
IACT.

3. Get the sleep current information from the datasheet and assign it to ISLP.
4. Monitor the toggling output pin in the oscilloscope and measure the period between two toggles. This gives the active

time. Assign this value to tACT.
5. Apply sleep-scan to the project. The period of the sleep-scan cycle, T, is set by selecting the sleep timer frequency in

the global resources window as shown in Figure 5-1.
6. Subtract active time from the sleep-scan cycle time to get the sleep time. TSLP = T – tACT.
7. Calculate the average current using Equation 10.
8. Calculate average power consumption using Equation 11.

Figure 5-1. Global Resources Window

5.6 Pin Assignments

An effective method to reduce interaction between CapSense sensor traces and communication and non -CapSense
traces is to isolate each by port assignment. Figure 5-2 shows a basic version of this isolation for a 32-pin QFN package.
Because each function is isolated, the CapSense controller is oriented such that there is no crossing of communication,
LED, and sensing traces.

Figure 5-2. Recommended Port Isolation for Communication, CapSense, and LEDs

The architecture of the CapSense controller imposes a restriction on current budget for even and odd port pin numbers.
An odd pin can be any port pin having an odd number as pin number. For a CapSense controller, if the current budget for
the odd port pin is 100 mA, the total current drawn though all odd port pins should not exceed 100 mA. In addition to the
total current budget limitation, there is also a maximum current limi tation for each port pin that is defined in the CapSense
controller datasheet.

 Design Considerations

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 52

5.7 GPIO Load Transient

When GPIOs sink a large current (>10 mA) to the ground of the chip by driving port pins to strong-low, noise will be
introduced into the CapSense system. The instantaneous change in the amount of current flow to ground through the
GPIOs is referred as GPIO load transient. The noise introduced into the CapSense system due to the GPIO load transient
is called GPIO load transient noise, as shown in Figure 5-3. This section shows you how to reduce this noise using
hardware techniques and compensate the noise using firmware techniques.

Figure 5-3. GPIO Load Transient Noise in a CapSense System

GPIO Load Transient

Noise
LED is ON

LED is OFF

When current is sunk through a GPIO pin, the voltage at CapSense ground (GPIO PAD) will not be zero because of the
non-zero bond-wire resistance, R3. Because of the non-zero ground potential, the sensor will not be completely
discharged when LED is sinking the current; this will cause an increase in the sensor raw count.

Figure 5-4. Ground Structure in CY8C20x66A/S

GPIO PAD

CapSense GND

GPIO GND

VSS

R1
R2

R3

GPIO PIN

CS Sensor

A
M

U
X

Note: R1, R2, R3 are bond-wire resistances

For a robust CapSense design, the worst-case GPIO transient noise should be less than 30% of the finger-touch signal.
The worst-case noise appears in the CapSense system when the GPIO state is changed from a no-current-flow state
(e.g., all LEDs OFF) to a maximum-current-flow state (e.g., all LEDs ON).

 Design Considerations

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 53

The GPIO load transient noise increases with the sensor scan resolution. CapSense sensors with high parasitic
capacitance or proximity sensors require higher sensor-scan resolution to achieve an SNR > 5:1. In such systems, the
effect of GPIO load transient is more pronounced. In some cases, the noise due to GPIO load transient might be higher
than the signal due to finger-touch and causes sensor false triggers. The section below shows how to reduce GPIO load
transient noise.

5.7.1 Hardware Guidelines to Reduce GPIO Load Transient Noise

a) Reduce Sensor CP
The sensor CP determines the sensor-scan resolution parameter. The larger the CP, the higher will be the resolution
parameter required to achieve an SNR > 5:1. Setting the resolution parameter high causes the amplitude of the GPIO
load transient noise to increase. Therefore, it is recommended to minimize the sensor C P by following the layout

guidelines mentioned in the Getting Started with CapSense design guide.

b) Reduce LED sink current
The GPIO load transient noise is directly proportional to the LED sink current. It is recommended to keep the LED
sink current within the limits as specified in the device datasheet. If the GPIO has to sink a current which is more than
the maximum value specified in datasheet, use an external transistor or a driver IC.

c) Select Appropriate Pins for LED

All CapSense controllers provide high-current sink- and source-capable port pins. When using high-current sink or
source from port pins, you should use the ports that are closest to the device ground pin to minimize the GPIO load
transient noise.

5.7.2 Firmware Guidelines to Compensate GPIO Load Transient Noise
To prevent sensor false-triggers due to GPIO load transient noise, the sensor baseline can be updated using rule-based
algorithms. One of the methods to compensate the baseline is explained below.

Figure 5-5 shows a condition in which false triggers are seen due to GPIO load transient.

1. At instant 1, there is no finger on the sensor and the LED is in the OFF condition.

2. At instant 2, a finger is on the sensor and the shift in rawcount is greater than finger threshold.

3. Because the shift in rawcount is greater than the finger threshold, the LED is turned ON at instant 3.

4. When the LED is turned ON, because of GPIO load transient noise, the rawcount further shifts.

5. At instant 4, even if the finger is removed, the rawcount will not return to initial value because of the shift in the
rawcount due to GPIO load transient noise. If this shift is greater than the finger threshold, the LED will remain ON
permanently indicating a sensor false-trigger.

To prevent the sensor and the LED from remaining in the ON condition permanently, the sensor baseline should be
compensated, which is explained in the steps below.

http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=59680

 Design Considerations

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 54

Figure 5-5. CapSense Sensor Variables when Baseline is Not Compensated

No Touch
Touch No Touch

Finger Threshold

Shift Due to

Finger Touch

Shift Due to GPIO Load

Transient

Rawcount Stuck due to

GPIO Load Transient

LED OFF LED ON

Sensor Status

Baseline

Rawcount

1

2

3

4

Figure 5-6 shows a condition in which false triggers are eliminated by compensating the sensor baseline.

1. At instant 1, there is no finger on the sensor and the LED is in the OFF condition.

2. At instant 2, a finger is on the sensor and the shift in rawcount (difference count) is greater than finger threshold.

3. Because the shift in difference count is greater than the finger threshold, the LED is turned ON at instant 3.

4. When the LED is turned ON, the noise due to GPIO load transient is calculated. Here, Noise = Rawcount (When LED
in ON) – Rawcount (When LED is OFF)

This noise count due to GPIO load transient is added to the baseline, and as a result, when the finger is removed, the
difference count value will be zero and the LED will be turned OFF.

5. After the LED is turned OFF, the rawcount will return to the initial value and the baseline is reset due to the low-
baseline reset algorithm.

 Design Considerations

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 55

Figure 5-6. CapSense Sensor Variables when Baseline is Compensated

No Touch
Touch No Touch

Finger Threshold

Shift Due to

Finger Touch

Shift Due to GPIO Load

Transient

Difference Count is Zero Due to

Baseline Compensation

LED OFF LED ON

Sensor Status

Baseline

Rawcount

1

2

3

4

LED OFF

Baseline

Compensated

Rawcount Returns to Initial Value

After LED is Turned OFF

Baseline is reset due to Low

Baseline Reset Algorithm

5

5.8 PCB Layout Guidelines

Detailed PCB layout guidelines are available in Getting Started with CapSense.

http://www.cypress.com/?rID=48787

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 56

6. Low-Power Design Considerations

Power consumption is an important aspect of microcontroller designs. Among the several techniques to reduce the
average current used by the CapSense controller, sleep mode is the most popular. The CapSense controller uses sleep
mode when it is not required to perform any function, similar to a cell phone backlight dimming after an idle period. This is
done to reduce the average current consumed by the device, a necessity of all battery appli cations. The CapSense
controller enters sleep mode by writing a ‘1’ to the SLEEP bit within the CPU_SCR0 register (Bit 3). This is accomplished
by calling the M8C_Sleep macro. While in sleep mode, the central CPU is stopped, the internal main oscillator (IMO) is
disabled, the Bandgap Voltage reference is powered down, and the Flash Memory Mode is disabled. The only circuits left
in operation are supply voltage monitor and 32-kHz internal oscillator. Power saving techniques other than sleep mode
are:

 Disable CapSense (PSoC) analog block references

 Disable CT and SC blocks

 Disable CapSense (PSoC) analog output buffers

 Set drive modes to analog HI-Z

Sleep mode has negative effects for a design. If not used carefully, it can cause unpredictable operation. The PSoC must
be correctly awakened from sleep when necessary, and the user must be aware that the device is sleeping to allow extra
processing.

6.1 Additional Power Saving Techniques

All the power saving techniques, with the exception of sleep mode, are application-based. Some of them produce
undesirable results. Each technique is discussed in detail in the following sections.

ABF_CR0 &= 0xc3; // Buffer Off

6.1.1 Set Drive Modes to Analog HI-Z
The state of the CapSense controller drive modes can affect power consumption. You can change the drive modes only
on pins that do not cause adverse effects to the system. The change must occur in a sequence that does not produce line
glitches. This sequence depends on the current drive mode of the pin and the state of the port data register. With the
CapSense controller drive mode structure, the pin must temporarily be in either Resistive Pull-up or Resistive Pull-down
drive mode when switching between HI-Z or Strong drive modes. The temporary drive mode is the opposite of the
previous value on the pin. Therefore, if the pin is driven high, then the temporary drive mode must be Resistive Pull-down.
This ensures that the drive mode of the pin is not resistive, which eliminates any possible glitch.

The drive modes are set manually in software, before going to sleep. Three registers, PRTxDM0, PRTxDM1, and
PRTxDM2, control the drive modes. One bit per register is assigned to a pin. Therefore, to change the drive mode of a
single pin, three register writes are needed. However, this is convenient because an entire port is changed by the same
three register writes. The correct pit pattern for Analog HI-Z is 110b. Use the following code to set port zero to Analog HI-
Z, from Strong, by first going to Resistive Pull-down.

PRT0DM0 = 0x00; // low bits

PRT0DM1 = 0xff; // med bits

PRT0DM2 = 0xff; //high bits

 Low-Power Design Considerations

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 57

6.1.2 Putting it All Together
The following code is a sample of a typical sleep preparation sequence for a 28 -pin part. In this sequence, interrupts are
disabled, the analog circuitry is turned off, all drive modes are set to analog HI-Z, and interrupts are re-enabled.

void PSoC_Sleep(void){

 M8C_DisableGInt;

 ARF_CR &= 0xf8; // analog blocks Off

 ABF_CR0 &= 0xc3; // analog buffer off

 PRT0DM0 = 0x00; // port 0 drives

 PRT0DM1 = 0xff;

 PRT0DM2 = 0xff;

 PRT1DM0 = 0x00; // port 1 drives

 PRT1DM1 = 0xff;

 PRT1DM2 = 0xff;

 PRT2DM0 = 0x00; // port 2 drives

 PRT2DM1 = 0xff;

 PRT2DM2 = 0xff;

 M8C_EnableGInt;

 M8C_Sleep;

}

6.1.3 Sleep Mode Complications
The CapSense controller can exit sleep either from a reset or through an interrupt. There are three types of resets within
the CapSense controller: External Reset, Watchdog Reset, and Power-On Reset. Any of these resets takes the
CapSense controller out of sleep mode. After the reset deasserts, the CapSense controller begins executing code starting
at Boot.asm . Available interrupts to wake the CapSense controller are: Sleep Timer, Low-Voltage Monitor, GPIO, Analog
Column, and Asynchronous. Sleep mode complications arise when using interrupts to wake the CapSense controller or
attempting digital communication while asleep. These considerations are discussed in detail in the following sections.

6.1.4 Pending Interrupts
If an interrupt is pending, enabled, and scheduled to occur after a write to the SLEEP bit in the CPU_SCR0 register, the
system will not go to sleep. The instruction still executes, but the CapSense controller does not set the SLEEP bit.
Instead, the interrupt is serviced, which effectively causes the CapSense controller to ignore the sleep instruction. To
avoid this, interrupts should be globally disabled while sleep preparation occurs and then re -enabled just before writing
the SLEEP bit.

6.1.5 Global Interrupt Enable
The Global Interrupt Enable register (CPU_F) need not be enabled to wake the CapSense controller from interrupts. The
only requirement to wake up from sleep by an interrupt is to use the correct interrupt mask within the INT_MSKx registers,
as in the example below. If global interrupts are disabled, the ISR that wakes the CapSense controller is not executed but
the CapSense controller still exits sleep mode.

In this case, you must manually clear the pending interrupt or enable global interrupts to allow the ISR to be serviced.
Interrupts are cleared within the INT_CLRx registers.

//Set Mask for GPIO Interrupts

M8C_EnableIntMask(INT_MSK0, INT_MSK0_GPIO)

// Clear Pending GPIO Interrupt

INT_CLR0 &= 0x20;

 Low-Power Design Considerations

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 58

6.2 Post Wakeup Execution Sequence

If the CapSense controller is awakened through a reset, execution starts at the beginning of the boot code. If the
CapSense controller is awakened by an interrupt service routine, the first instruction to execute is the one immediately
following the sleep instruction. This is because the instruction immediately following the sleep instruction is prefetched
before the CapSense controller is asleep. Therefore, if global interrupts are disabled, the instruction execution will
continue where it left off before sleep is initiated.

6.2.1 PLL Mode Enabled
If PLL mode is enabled, the CPU frequency must be reduced to the minimum of 3 MHz before going to sleep. This is
because the PLL always overshoots as it attempts to relock after the CapSense controller wakes up and is re -enabled.
Additionally, you should wait 10 ms after wakeup before normal CPU operation begins to ensure proper execution. This
implies that, to use sleep mode and the PLL, the software must be able to execute at 3 MHz. A simple write to the
OSC_CR0 register can reduce CPU speed. However, this register just sets a divider of SYSCLK, which means that the
CPU speed will vary between part families with different SYSCLKs. Typically, SYSCLK is 24 MHz.

OSC_CR0 &= 0xf8; // CPU = 3 IMO = 24

6.2.2 Execution of Global Interrupt Enable
Avoid interrupts on the instruction boundary of writing the SLEEP bit. This can cause all firmware preparations for going to
sleep to be bypassed, if a sleep command is executed on a return from interrupt (reti) instruction. To prevent this,
interrupts are temporarily disabled before sleep preparations and then re -enabled before going to sleep. Because of the
timing of the Global Interrupt instruction, an interrupt cannot occur during the next instruction, which in this case is setting
the SLEEP bit.

6.2.3 I2C Slave with Sleep Mode
There are a few complications using an I

2
C Slave in sleep mode. Because the IMO and CPU are shut during sleep, there

is no processing within the CapSense controller. The problem arises with the I
2
C address. When an I

2
C START condition

is sent to a particular address, the CapSense controller cannot process the address and therefore responds with a NAK. A
typical workaround is to set up falling edge interrupts on either the clock or data lines of the I

2
C bus. The master can then

send a dummy START condition to wake up the CapSense controller. There is some lag time between waking up and
being able to process an I

2
C address, so the master may need to delay up to 200 µs before the next transmission or

continue to send until an ACK is received. This solution has a second problem in that the CapSense controller will wake
up on any I

2
C falling-edge traffic, which causes more total active time and higher sleep currents. Another solution is to use

a third GPIO pin to wake up the CapSense controller and then send the initial START condition after the appropriate delay
time.

6.2.4 Sleep Timer
The CapSense controller offers a sleep timer and a Sleep Timer User Module. These are used while CapSense controller
is asleep and both perform similar functions. The actual sleep timer runs off of the internal low -speed oscillator, which is
never turned off. At selectable intervals of 1 Hz, 8 Hz, 64 Hz, and 512 Hz, the timer generates an interrupt. It is often
useful to periodically wake the CapSense controller up to do some processing or check for activity. An example of this is
to periodically wake up to scan a sensor. The Sleep Timer User Module uses the sleep timer to generate some additional
functionality. This functionality includes a background tick counter to generate periodic interrupts, a delay function for
program loops, a settable down counter, and a loop governor to control loop time. A simple block diagram for this
functionality is shown in Figure 6-1.

Figure 6-1. Sleep Timer User Module Block Diagram

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 59

7. Resources

7.1 Website

Visit Cypress’s CapSense Controllers website to access all of the reference material discussed in this section.

Find a variety of technical resources for the CapSense CY8C20xx6A/H/AS family of devices on the CY8C20xx6A/H web
page.

7.2 Datasheet

The datasheets for the CapSense CY8C20XX6A/H/AS family of devices are available at www.cypress.com.

 CY8C20x36A, CY8C20x46A, CY8C20x66A, CY8C20x96A, CY8C20x46AS, and CY8C20x66AS

 CY8C20336H, CY8C20446H

7.3 Technical Reference Manual

Cypress created the following technical reference manual to give quick and easy access to information on CapSense
controller functionality, including top-level architectural diagrams along with register and timing diagrams.

 PSoC
®
 CY8C20x66, CY8C20x66A, CY8C20x46/96, CY8C20x46A/96A, CY8C20x36, CY8C20x36A Technical

Reference Manual (TRM)

7.4 Development Kits

7.4.1 Universal CapSense Controller Kit

Universal CapSense Controller Kits feature predefined control circuitry and plug-in hardware to make prototyping and
debugging easy. Programming and I

2
C-to-USB Bridge hardware are included for tuning and data acquisition.

 CY3280-20xx6 Universal CapSense Controller

7.4.2 Universal CapSense Module Boards

7.4.2.1 Simple Button Module Board

The CY3280-BSM Simple Button Module consists of ten CapSense buttons and ten LEDs. This module connects to any
CY3280 Universal CapSense Controller Board

7.4.2.2 Matrix Button Module Board

The CY3280-BMM Matrix Button Module consists of eight LEDs and eight CapSense sensors organized in a 4×4 matrix
format to form 16 physical buttons. This module connects to any CY3280 Universal CapSense Controller Board.

7.4.2.3 Linear Slider Module Board

The CY3280-SLM Linear Slider Module consists of five CapSense buttons, one linear slider (with ten sensors), and five
LEDs. This module connects to any CY3280 Universal CapSense Controller Board.

http://www.cypress.com/?id=1575&source=header
http://www.cypress.com/?id=1413
http://www.cypress.com/
http://www.cypress.com/?rID=38122
http://www.cypress.com/?rID:%2049124
http://www.cypress.com/?rID=34379
http://www.cypress.com/?rID=34379
http://www.cypress.com/?rID=38222
http://www.cypress.com/?rID=37760
http://www.cypress.com/?rID=37759
http://www.cypress.com/?rID=37761

 Resources

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 60

7.4.2.4 Radial Slider Module Board

The CY3280-SRM Radial Slider Module consists of four CapSense buttons, one radial slider (with ten sensors), and four
LEDs. This module connects to any CY3280 Universal CapSense Controller Board

7.4.2.5 Universal CapSense Prototyping Module

The CY3280-BBM Universal CapSense Prototyping Module provides access to every signal routed to the 44 -pin
connector on the attached controller boards. The Prototyping Module board is used in conjunction with a Universal
CapSense Controller board to implement additional functionality that is not part of the other single -purpose Universal
CapSense Module boards

7.4.3 In-Circuit Emulation (ICE) Kits

The ICE pod provides the interconnection between the CY3215-DK In-Circuit Emulator and the target PSoC device in a
prototype system or PCB using package-specific pod feet, through a flex cable. The following pods are available.

 CY3250-20246QFN In-Circuit Emulation (ICE) Pod Kit for Debugging CY8C20236/46A CapSense PSoC Devices

 CY3250-20346QFN In-Circuit Emulation (ICE) Pod Kit for Debugging CY8C20336/346A CapSense PSoC Devices

 CY3250-20666QFN In-Circuit Emulation (ICE) Pod Kit for Debugging CY8C20636/646/666A CapSense PSoC
Devices

 CY3250-20566 In-Circuit Emulation (ICE) Pod Kit for Debugging CY8C20536/546/566A CapSense PSoC Devices

7.5 Sample Board Files

Cypress offers sample schematic and board files , which can be used as a reference to quickly complete your PCB design
process.

 Button design with I
2
C header on CY8C20466A

 Button and slider design with I
2
C header on CY8C20466A

Note The board files (schematic, layout, and Gerber files) will be placed in the landing page of this document.

Figure 7-1 and Figure 7-2 show the board schematics.

The following schematic is designed to support:

 Six CapSense sensors. The sensors are assigned to pins P0[6], P0[4], P0[2], P0[0],P2[6], and P2[4] of the
CY8C20466A-24LQXI device.

 Six GPOs connected to pins P0[1],P2[1],P2[3],P2[5],P2[7], and P3[3] of CY8C20466A-24LQXI to drive LEDs D1,
D2,D3,D4,D5, and D6.

 Programming of CY8C20466A-24LQXI by way of the programming header J1.

 I
2
C communication with CY8C20466A-24LQXI by way of the I

2
C header J2.

http://www.cypress.com/?rID=37762
http://www.cypress.com/?rID=3483
http://www.cypress.com/?rID=39045
http://www.cypress.com/?rID=39043
http://www.cypress.com/?rID=39041
http://www.cypress.com/?rID=39041
http://www.cypress.com/?rID=39052

 Resources

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 61

Figure 7-1. Button Design with I
2
C Header on CY8C20466A - Board Schematic

This following schematic is designed to support:

 Four CapSense sensors. The sensors are assigned to pins P0[6], P0[4], P3[2], and P3[0] of the CY8C20466A-
24LQXI device.

 Linear slider with five segments. The segments are assigned to pins P0[0], P2[6], P2[4], P2[2], and P2[0] of the
CY8C20466A-24LQXI device.

 Four GPOs connected to pins P1[6], P1[4], P2[5], and P2[7] CY8C20466A-24LQXI to drive LEDs D1, D2, D3, and
D4.

 Programming of CY8C20466A-24LQXIby way of the programming header J1.

 I
2
C communication with CY8C20466A-24LQXIby way of the I

2
C header J2.

 Resources

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 62

Figure 7-2. Button and Slider Design with I
2
C Header on CY8C20466A

7.6 PSoC Programmer

PSoC Programmer is a flexible, integrated programming application for programming PSoC devices. It can be used with
PSoC Designer and PSoC Creator to program any design onto a PSoC device.

PSoC Programmer includes a hardware layer with APIs to design specific applications using the programmers and bridge
devices. The PSoC Programmer hardware layer is fully detailed in the COM guide documentation as well as example
code across the following languages: C#, C, Perl, and Python.

7.7 CapSense Data Viewing Tools

Often during CapSense design, you will want to monitor relevant CapSense data (raw counts, baseline, difference counts,
and so on) for tuning and debugging purposes.

Application note AN2397 – CapSense Data Viewing Tools gives information to help you identify and use the right tools for
CapSense data viewing and logging.

7.8 PSoC Designer

Cypress offers an exclusive integrated development environment, PSoC Designer. With PSoC Designer, you can
configure analog and digital blocks, develop firmware, and tune your design. Applications are developed in a drag-and-
drop design environment using a library of fully characterized analog and digital functions, including CapSense.
PSoC Designer comes with a built-in C compiler and an embedded programmer. A pro compiler is available for complex
designs.

http://www.cypress.com/?rID=38050
http://www.cypress.com/?rID=2784
http://www.cypress.com/?id=2522

 Resources

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 63

7.9 Code Examples

Cypress offers a large collection of code examples to get your design up and running fast.

 CapSense Controller Code Examples Design Guide

 CSD Software Filters with EzI2Cs Slave on CY8C20xx6A

7.10 Design Support

Cypress has a variety of design support channels to ensure the success of your CapSense solutions.

 Knowledge Base Articles – See the technical articles by product family or perform a search on various CapSense
topics.

 CapSense Application Notes – See a wide variety of application notes built on information presented in this
document.

 White Papers – Learn about advanced capacitive-touch interface topics.

 Cypress Developer Community – Connect with the Cypress technical community and exchange information.

 CapSense Product Selector Guide – See the complete product offering of Cypress’s CapSense product line.

 Video Library – Quickly get up to speed with tutorial videos .

 Quality and Reliability – Cypress is committed to complete customer satisfaction. At our Quality website you can find
reliability and product qualification reports.

 Technical Support – World class technical support is available online.

http://www.cypress.com/?rID=66647
http://www.cypress.com/?rID=46978
http://www.cypress.com/?id=4&rtID=118
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=1575&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=115&id=0&applicationID=0&l=0
http://www.cypress.com/?id=2203&source=header
http://www.cypress.com/?rID=46723
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1090&source=header
https://secure.cypress.com/myaccount/?id=25

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 64

Glossary

AMUXBUS

Analog multiplexer bus available inside PSoC that helps to connect I/O pins with multiple internal analog

signals.

SmartSense™ Auto-Tuning

A CapSense algorithm that automatically sets sensing parameters for optimal performance after the design

phase and continuously compensates for system, manufacturing, and environmental changes.

Baseline

A value resulting from a firmware algorithm that estimates a trend in the Raw Count when there is no human

finger present on the sensor. The Baseline is less sensitive to sudden changes in the Raw Count and
provides a reference point for computing the Difference Count.

Button or Button Widget

A widget with an associated sensor that can report the active or inactive state (that is, only two states) of the
sensor. For example, it can detect the touch or no-touch state of a finger on the sensor.

Difference Count

The difference between Raw Count and Baseline. If the difference is negative, or i f it is below Noise
Threshold, the Difference Count is always set to zero.

Capacitive Sensor

A conductor and substrate, such as a copper button on a printed circuit board (PCB), which reacts to a t ouch
or an approaching object with a change in capacitance.

CapSense
®

Cypress’s touch-sensing user interface solution. The industry’s No. 1 solution in sales by 4x over No. 2.

CapSense Mechanical Button Replacement (MBR)

Cypress’s configurable solution to upgrade mechanical buttons to capacitive buttons, requires minimal

engineering effort to configure the sensor parameters and does not require firmware development . These
devices include the CY8CMBR3XXX and CY8CMBR2XXX families.

Centroid or Centroid Position

A number indicating the finger position on a slider within the range given by the Slider Resolution. This
number is calculated by the CapSense centroid calculation algorithm.

 Glossary

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 65

Compensation IDAC

A programmable constant current source, which is used by CSD to compensate for excess sensor CP. This

IDAC is not controlled by the Sigma-Delta Modulator in the CSD block unlike the Modulation IDAC.

CSD

CapSense Sigma Delta (CSD) is a Cypress-patented method of performing self-capacitance (also called self-

cap) measurements for capacitive sensing applications.

In CSD mode, the sensing system measures the self-capacitance of an electrode, and a change in the self-
capacitance is detected to identify the presence or absence of a finger.

Debounce

A parameter that defines the number of consecutive scan samples for which the touch should be present for it
to become valid. This parameter helps to reject spurious touch signals.

A finger touch is reported only if the Difference Count is greater than Finger Threshold + Hysteresis for a
consecutive Debounce number of scan samples.

Driven-Shield

A technique used by CSD for enabling liquid tolerance in which the Shield Electrode is driven by a signal that
is equal to the sensor switching signal in phase and amplitude.

Electrode

A conductive material such as a pad or a layer on PCB, ITO, or FPCB. The electrode is connected to a port
pin on a CapSense device and is used as a CapSense sensor or to drive specific signals associated with
CapSense functionality.

Finger Threshold

A parameter used with Hysteresis to determine the state of the sensor. Sensor state is reported ON if the
Difference Count is higher than Finger Threshold + Hysteresis, and it is reported OFF if the Difference Count

is below Finger Threshold – Hysteresis.

Ganged Sensors

The method of connecting multiple sensors together and scanning them as a single sensor . Used for

increasing the sensor area for proximity sensing and to reduce power consumption.

To reduce power when the system is in low-power mode, all the sensors can be ganged together and
scanned as a single sensor taking less time instead of scanning all the sensors individually. When the user

touches any of the sensors, the system can transition into active mode where it scans all the sensors
individually to detect which sensor is activated.

PSoC supports sensor-ganging in firmware, that is, multiple sensors can be connected simultaneously to

AMUXBUS for scanning.

Gesture

Gesture is an action, such as swiping and pinch-zoom, performed by the user. CapSense has a gesture

detection feature that identifies the different gestures based on predefined touch patterns. In the CapSense
component, the Gesture feature is supported only by the Touchpad Widget.

Guard Sensor

Copper trace that surrounds all the sensors on the PCB, similar to a button sensor and is used to detect a
liquid stream. When the Guard Sensor is triggered, firmware can disable scanning of all other sensors to
prevent false touches.

 Glossary

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 66

Hatch Fill or Hatch Ground or Hatched Ground

While designing a PCB for capacitive sensing, a grounded copper plane should be placed surrounding the

sensors for good noise immunity. But a solid ground increases the parasitic capacitance of the sensor which
is not desired. Therefore, the ground should be filled in a special hatch pattern. A hatch pattern has closely-
placed, crisscrossed lines looking like a mesh and the line width and the spacing between two lines determine

the fill percentage. In case of liquid tolerance, this hatch fill referred as a shield electrode is driven with a
shield signal instead of ground.

Hysteresis

A parameter used to prevent the sensor status output from random toggling due to system noise, used in
conjunction with the Finger Threshold to determine the sensor state. See Finger Threshold.

IDAC (Current-Output Digital-to-Analog Converter)

Programmable constant current source available inside PSoC, used for CapSense and ADC operations.

Liquid Tolerance

The ability of a capacitive sensing system to work reliably in the presence of liquid droplets, streaming liquids

or mist.

Linear Slider

A widget consisting of more than one sensor arranged in a specific linear fashion to detect the physical

position (in single axis) of a finger.

Low Baseline Reset

A parameter that represents the maximum number of scan samples where the Raw Count is abnormally

below the Negative Noise Threshold. If the Low Baseline Reset value is exceeded, the Baseline is reset to the
current Raw Count.

Manual-Tuning

The manual process of setting (or tuning) the CapSense parameters.

Matrix Buttons

A widget consisting of more than two sensors arranged in a matrix fashion, used to detect the presence or

absence of a human finger (a touch) on the intersections of vertically and horizontally arranged sensors.

If M is the number of sensors on the horizontal axis and N is the number of sensors on the vertical axis, the
Matrix Buttons Widget can monitor a total of M x N intersections using ONLY M + N port pins.

When using the CSD sensing method (self-capacitance), this Widget can detect a valid touch on only one
intersection position at a time.

Modulation Capacitor (CMOD)

An external capacitor required for the operation of a CSD block in Self-Capacitance sensing mode.

Modulator Clock

A clock source that is used to sample the modulator output from a CSD block during a sensor scan. This

clock is also fed to the Raw Count counter. The scan time (excluding pre and post processing times) is given
by
(2

N
– 1)/Modulator Clock Frequency, where N is the Scan Resolution.

Modulation IDAC

Modulation IDAC is a programmable constant current source, whose output is controlled (ON/OFF) by the
sigma-delta modulator output in a CSD block to maintain the AMUXBUS voltage at VREF. The average current

supplied by this IDAC is equal to the average current drawn out by the sensor capacitor.

 Glossary

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 67

Mutual-Capacitance

Capacitance associated with an electrode (say TX) with respect to another electrode (say RX) is known as

mutual capacitance.

Negative Noise Threshold

A threshold used to differentiate usual noise from the spurious signals appearing in negative direction. This

parameter is used in conjunction with the Low Baseline Reset parameter.

Baseline is updated to track the change in the Raw Count as long as the Raw Count stays within Negative
Noise Threshold, that is, the difference between Baseline and Raw count (Baseline – Raw count) is less than

Negative Noise Threshold.

Scenarios that may trigger such spurious signals in a negative direction include: a finger on the sensor on
power-up, removal of a metal object placed near the sensor, removing a liquid-tolerant CapSense-enabled

product from the water; and other sudden environmental changes.

Noise (CapSense Noise)

The variation in the Raw Count when a sensor is in the OFF state (no touch), measured as peak -to-peak

counts.

Noise Threshold

A parameter used to differentiate signal from noise for a sensor. If Raw Count – Baseline is greater than

Noise Threshold, it indicates a likely valid signal. If the difference is less than Noise Threshold, Raw Count
contains nothing but noise.

Overlay

A non-conductive material, such as plastic and glass, which covers the capacitive sensors and acts as a
touch-surface. The PCB with the sensors is directly placed under the overlay or is connected through springs.
The casing for a product often becomes the overlay.

Parasitic Capacitance (CP)

Parasitic capacitance is the intrinsic capacitance of the sensor electrode contributed by PCB t race, sensor
pad, vias, and air gap. It is unwanted because it reduces the sensitivity of CSD.

Proximity Sensor

A sensor that can detect the presence of nearby objects without any physical contact.

Radial Slider

A widget consisting of more than one sensor arranged in a specific circular fashion to detect the physical
position of a finger.

Raw Count

The unprocessed digital count output of the CapSense hardware block that represents the physical
capacitance of the sensor.

Refresh Interval

The time between two consecutive scans of a sensor.

Scan Resolution

Resolution (in bits) of the Raw Count produced by the CSD block.

Scan Time

Time taken for completing the scan of a sensor.

 Glossary

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 68

Self-Capacitance

The capacitance associated with an electrode with respect to circuit ground.

Sensitivity

The change in Raw Count corresponding to the change in sensor capacitance, expressed in counts/pF.
Sensitivity of a sensor is dependent on the board layout, overlay properties, sensing method, and tuning

parameters.

Sense Clock

A clock source used to implement a switched-capacitor front -end for the CSD sensing method.

Sensor

See Capacitive Sensor.

Sensor Auto Reset

A setting to prevent a sensor from reporting false touch status indefinitely due to system failure, or when a
metal object is continuously present near the sensor.

When Sensor Auto Reset is enabled, the Baseline is always updated even if the Difference Count is greater

than the Noise Threshold. This prevents the sensor from reporting the ON status for an indefinite period of
time. When Sensor Auto Reset is disabled, the Baseline is updated only when the Difference Count is less
than the Noise Threshold.

Sensor Ganging

See Ganged Sensors.

Shield Electrode

Copper fill around sensors to prevent false touches due to the presence of water or other liquids. Shield
Electrode is driven by the shield signal output from the CSD block. See Driven-Shield.

Shield Tank Capacitor (CSH)

An optional external capacitor (CSH Tank Capacitor) used to enhance the drive capability of the CSD shield,
when there is a large shield layer with high parasitic capacitance.

Signal (CapSense Signal)

Difference Count is also called Signal. See Difference Count.

Signal-to-Noise Ratio (SNR)

The ratio of the sensor signal, when touched, to the noise signal of an untouched sensor.

Slider Resolution

A parameter indicating the total number of finger positions to be resolved on a slider.

Touchpad

A Widget consisting of multiple sensors arranged in a specific horizontal and vertical fashion to detect the X
and Y position of a touch.

Trackpad

See Touchpad.

Tuning

The process of finding the optimum values for various hardware and software or threshold parameters

required for CapSense operation.

 Glossary

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 69

VREF

Programmable reference voltage block available inside PSoC used for CapSense and ADC operation.

Widget

A user-interface element in the CapSense component that consists of one sensor or a group of similar
sensors. Button, proximity sensor, linear slider, radial slider, matrix buttons, and touchpad are the supported

widgets.

AN65973 - CY8C20xx6A/H/AS CapSense
®
 Design Guide, Doc. No. 001-65973 Rev. *J 70

Revision History

Document Revision History

Document Title: AN65973 - CY8C20xx6A/H/AS CapSense® Design Guide

Document Number: 001-65973

Revision Issue Date Origin of

Change

Description of Change

** 12/14/2010 ANBA New Design Guide

*A 03/04/2011 BVI Mult iple chapter enhancements for content and reader clarity

*B 06/14/2011 BVI Part numbers for SmartSense_EMC enabled CapSense controller is updated.
Best practice for SmartSense_EMC user module is updated

*C 12/23/2011 BVI Added bulleted abstract

Added Section 1.2

Moved Documented Revision History to end of document

Rew rote Section 2 for clarity

Mult iple updates based on NPS audit

*D 02/20/2012 VAIR/ZINE Corrected maximum raw counts value from 2^(N-1) to (2^N) – 1

Corrected reference to CSD UM APIs in section 4-9

Corrected references in Figure 4-4

*E 09/06/2012 ZINE Updated links to external documents

*F 09/03/2014 SSHH Corrected definition of Hysteresis in section 3.4.1.2.

Updated the sensor auto-reset information in section 3.4.1.8.

*G 01/22/2015 DCHE/SSHH Updated sections 3.4.1.2 and 3.4.1.8

Added section 5.7 – GPIO Load Transient

Updated to new template.

Completing Sunset Review .

*H 01/21/2016 VAIR Added Glossary.

*I 02/07/2017 SSHH Updated to new template.

Completing Sunset Review .

*J 07/13/2017 AESATMP9 Updated logo and copyright.

	AN65973 - CY8C20xx6A/H/AS
	1.1 Abstract
	1.2 Cypress’s CapSense Documentation Ecosystem
	1.3 CY8C20xx6A/H/AS CapSense Family Features
	1.3.1 Advanced Touch Sensing Features
	1.3.2 Device Features

	1.4 Document Conventions
	2.1 CapSense Fundamentals
	2.2 Capacitive Sensing Methods in CY8C20xx6A/AS/H
	2.2.1 CapSense Sigma-Delta (CSD)
	2.2.2 CapSense Successive Approximation Electromagnetic Compatibility (CSA_EMC)

	2.3 SmartSense Auto-Tuning
	2.3.1.1 Process Variation
	2.3.1.2 Reduced Design Cycle Time

	3.1 Overview
	3.1.1 PSoC Designer and User Modules
	3.1.1.1 Getting Started with CapSense User Modules

	3.1.2 Universal CapSense Controller Kit
	3.1.3 Universal CapSense Controller Module Board
	3.1.4 CapSense Data Viewing Tools

	3.2 User Module Overview
	3.3 CapSense User Module Global Arrays
	3.3.1 Raw Count
	3.3.2 Baseline
	3.3.3 Difference Count (Signal)
	3.3.4 Sensor State

	3.4 CSD User Module Parameters
	3.4.1 User Module High-Level Parameters
	3.4.1.1 Finger Threshold
	3.4.1.2 Hysteresis
	3.4.1.3 Debounce
	3.4.1.4 Baseline Update Threshold
	3.4.1.5 Noise Threshold
	3.4.1.6 Negative Noise Threshold
	3.4.1.7 Low Baseline Reset
	3.4.1.8 Sensors Autoreset

	3.4.2 CSD User Module Low-Level Parameters
	3.4.2.1 IDAC Value
	3.4.2.2 Resolution
	3.4.2.3 Scanning Speed
	3.4.2.4 Shield Electrode Out
	3.4.2.5 Precharge Source
	3.4.2.6 Prescaler
	3.4.2.7 PRS Resolution
	3.4.2.8 Autocalibration
	3.4.2.9 IDAC Range

	3.4.3 CSA_EMC User Module Low-Level Parameters
	3.4.3.1 Settling Time
	3.4.3.2 Freq Num
	3.4.3.3 Spread Spectrum
	3.4.3.4 Raw Data Median Filter
	3.4.3.5 RawData IIR Filter
	3.4.3.6 RawData IIR Filter Coefficient
	3.4.3.7 Clock

	3.4.4 SmartSense User Module Parameters
	3.4.4.1 Shield Electrode Out
	3.4.4.2 Sensor Sensitivity
	3.4.4.3 MultiChart for Monitoring CapSense User Module Parameters

	3.4.5 SmartSense_EMC User Module Parameters
	3.4.5.1 Shield Electrode Out
	3.4.5.2 Immunity Level
	3.4.5.3 Threshold Setting Mode
	3.4.5.4 Sensor Sensitivity

	4.1 General Considerations
	4.1.1 Signal, Noise, and SNR
	4.1.1.1 CapSense Signal
	4.1.1.2 CapSense Noise
	4.1.1.3 CapSense SNR

	4.1.2 Charge/Discharge Rate
	4.1.3 Importance of Baseline Update Threshold Verification

	4.2 Tuning the CSA_EMC User Module
	4.3 Recommended CINT Value for CSA_EMC
	4.4 Measuring Sensor CP
	4.5 Estimating CSA_EMC Clock
	4.6 Setting Settling Time
	4.7 Monitoring CapSense Data
	4.8 Methods to Increase SNR
	4.8.1 Reduce Noise
	4.8.2 Increase Signal

	4.9 Tuning the CSD User Module
	4.9.1 Recommended CMOD Value for CSD
	4.9.2 ShieldElectrodeOut
	4.9.3 IDAC Range
	4.9.4 Autocalibration
	4.9.5 IDAC Value
	4.9.6 Precharge Source
	4.9.7 Prescaler
	4.9.8 Resolution
	4.9.9 Scanning Speed
	4.9.10 High-Level API Parameters
	4.9.11 Set High-Level Parameters

	4.10 Using the SmartSense User Module
	4.10.1 Guidelines for SmartSense
	4.10.2 Understanding the Difference
	4.10.3 Recommended CCMOD Value for SmartSense
	4.10.4 SmartSense User Module Parameters
	4.10.4.1 Sensors Autoreset
	4.10.4.2 Debounce
	4.10.4.3 Modulator Capacitor Pin
	4.10.4.4 Sensitivity Level

	4.10.5 SmartSense_EMC User Module Specific Guidelines
	4.10.5.1 Sensor Scan Time, Response Time, and Memory Utilization
	4.10.5.2 IMO Tolerance and Time Critical Task
	4.10.5.3 I2C Operating Speed

	4.10.6 Scan Time of a CapSense Sensor
	4.10.7 SmartSense Response Time
	4.10.8 Method to Ensure Minimum SNR Using the SmartSense_EMC User Module
	4.10.9 Firmware Design Guidelines

	5.1 Overlay Selection
	5.2 ESD Protection
	5.2.1 Prevent
	5.2.2 Redirect
	5.2.3 Clamp

	5.3 Electromagnetic Compatibility (EMC) Considerations
	5.3.1 Radiated Interference
	5.3.2 Radiated Emissions
	5.3.3 Conducted Immunity and Emissions

	5.4 Software Filtering
	5.5 Power Consumption
	5.5.1 System Design Recommendations
	5.5.2 Sleep-Scan Method
	5.5.3 Response Time versus Power Consumption
	5.5.4 Measuring Average Power Consumption

	5.6 Pin Assignments
	5.7 GPIO Load Transient
	5.7.1 Hardware Guidelines to Reduce GPIO Load Transient Noise
	5.7.2 Firmware Guidelines to Compensate GPIO Load Transient Noise

	5.8 PCB Layout Guidelines
	6.1 Additional Power Saving Techniques
	6.1.1 Set Drive Modes to Analog HI-Z
	6.1.2 Putting it All Together
	6.1.3 Sleep Mode Complications
	6.1.4 Pending Interrupts
	6.1.5 Global Interrupt Enable

	6.2 Post Wakeup Execution Sequence
	6.2.1 PLL Mode Enabled
	6.2.2 Execution of Global Interrupt Enable
	6.2.3 I2C Slave with Sleep Mode
	6.2.4 Sleep Timer

	7.1 Website
	7.2 Datasheet
	7.3 Technical Reference Manual
	7.4 Development Kits
	7.4.1 Universal CapSense Controller Kit
	7.4.2 Universal CapSense Module Boards
	7.4.2.1 Simple Button Module Board
	7.4.2.2 Matrix Button Module Board
	7.4.2.3 Linear Slider Module Board
	7.4.2.4 Radial Slider Module Board
	7.4.2.5 Universal CapSense Prototyping Module

	7.4.3 In-Circuit Emulation (ICE) Kits

	7.5 Sample Board Files
	7.6 PSoC Programmer
	7.7 CapSense Data Viewing Tools
	7.8 PSoC Designer
	7.9 Code Examples
	7.10 Design Support
	Document Revision History

